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ABSTRACT 
This article presents the results and analysis performed on the application of the Laplacian Regularized Least 

Squares (LapRLS) algorithm on a set of sentiment analysis data. Initially, a description of the method, its 
parameters, and its characteristics are presented. Then, a case study and some necessary concepts about text 
representation are detailed. Next, the obtained results in the task of classifying words are shown and analyzed in 
the context of semi-supervised learning of opinion dictionaries. The analysis of results suggests that the method 
has shown potential for the construction of opinion dictionaries, obtaining an accuracy of 67.74% on the data set. 
It should be noted that these results could possibly be improved by applying an extensive optimization of the 
parameters of the LapRLS algorithm. 
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INTRODUCTION 

The aim of this research work is to present an application of the spectral graph theory in the field of neural 
networks, specifically the Laplacian Regularized Least Squares (LapRLS) algorithm. Initially, in order to do this, 
a description of the LapRLS algorithm is presented and then the algorithm is applied in a case study in the field 
of Sentiment Analysis. 

Sentiment analysis can be defined informally as the process by which it is determined whether a phrase or act 
of speech contains an opinion, positive or negative, about a specific entity or concept. Sentiment analysis is a 
complex process because it attempts to recognize a pattern in a text expressed in natural language, usually in a 
specific domain [1]. 

Sentiment analysis and opinion mining can provide support and help in the following tasks and areas: market 
intelligence [2], observing the attitudes of the populace towards political movements [3], box office prediction for 
feature films [4], determining the level of consumer satisfaction with a product or service [5], among others [1, 
6]. 

The effective development of opinion mining systems has a large number of challenges. First, it is necessary 
to identify the contents in a text, this task is not trivial due to the nature of language, which has a large number of 
semantic subtleties that are not present in other types of data. Second, sentiments must be classified in some way 
and thus determine their orientation. There are different ways of approaching this problem [7]. 

Creating sentiment lexicons for specific domains is an important task in sentiment analysis [8]. These lexicons 
allow researchers and practitioners to analyze key subjective properties of texts [9]. There are two main schemes 
to obtain a sentiment lexicon: corpus-based techniques and dictionary-based techniques [8]. In particular, corpus-
based approaches require seed words and use pattern recognition techniques to induce sentiment lexicons [10, 
11]. Dictionary-based approaches use manually crafted resources [12], such as ontologies as WordNet [13].  

One of the possible approaches used in corpus-based techniques is to use lexical graphs using word co-
occurrences and then propagate labels [14, 15]. In the work of Hamilton et al. [8], the authors combine domain-
specific word embeddings and apply a label propagation framework in order to induce an accurate sentiment 
lexicon for this domain, starting from a small set of seed words. 

Our proposal uses a similar approach, using a graph-based approach (through the application of the LapRLS 
algorithm) based on word embeddings obtained with word2vec. 
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LAPRLS ALGORITHM 
 
The following section is based on the description given by Haykin [15]. Given a set of training examples  𝑿𝑿 =

{𝐱𝐱𝑖𝑖}𝑖𝑖=1𝑁𝑁  a weighted and non-directed graph 𝐺𝐺 is constructed. Each example will be represented by a vertex (that 
is, the example 𝐱𝐱𝑖𝑖 will be associated with the vertex 𝑖𝑖). To determine if two vertices are adjacent, the following 
criterion of adjacency based on the Euclidean norm will be used, as defined in Formula (1). 
 

𝑖𝑖~𝑗𝑗 ⇔ �𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗� < 𝜀𝜀   (1) 
 
Taking this adjacency criterion into account, the weights of each edge are defined. To determine the weights 

𝑤𝑤𝑖𝑖𝑖𝑖, two cases must be considered. The first corresponds to vertices i and j being adjacent. In this case, the weight 
of the corresponding edge is defined by Formula (2). 

 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 𝑒𝑒−
�𝒙𝒙𝑖𝑖−𝒙𝒙𝑗𝑗�

2

2𝜎𝜎2    (2) 
 
The second case occurs when the vertices i and j are not adjacent. In this situation, it is defined that 𝑤𝑤𝑖𝑖𝑖𝑖 = 0 

to satisfy the connectivity condition [15]  (i.e. there is no edge between i and j). 
The Regularized Least Squares algorithm is taken as a base and the new intrinsic regularization term is added. 

The error function is written in matrix notation as 
 

ℇ𝜆𝜆(𝐚𝐚) =
1
2

(𝐝𝐝 − 𝐉𝐉𝐉𝐉𝐉𝐉)𝑇𝑇(𝒅𝒅 − 𝑱𝑱𝑱𝑱𝑱𝑱) +
1
2 𝜆𝜆𝐴𝐴𝐚𝐚

𝑇𝑇𝐊𝐊𝐊𝐊 +
1
2 𝜆𝜆𝐼𝐼𝐚𝐚

𝑇𝑇𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊,   (3) 
 
where the following notation has been used: 
 

• Vector of expected responses 𝐝𝐝 = [𝑑𝑑1, 𝑑𝑑2, … ,𝑑𝑑𝑙𝑙]𝑇𝑇 of order 𝑁𝑁 × 1. Note that the last entries are filled 
with zeroes, this is done in order to ensure that the matrix operations have consistent dimensiones. 
Filling these entries with zeroes does not affect the results because the matrix makes sure that 
unlabeled entries do not influence this term of the error, in fact, any other value could be used as a 
placeholder for these entries. 

• Vector of expansion coefficients 𝐚𝐚 = [𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑁𝑁]𝑇𝑇 of order 𝑁𝑁 × 1. 
• Diagonal matrix partially filled with 𝑙𝑙 unit entries, 𝐉𝐉 = diag[1,1, … ,1,0,0, … ,0]𝑇𝑇 of order 𝑁𝑁 ×𝑁𝑁, that 

allows to distinguish which elements have a known response and which do not (allows separating the 
supervised from the unsupervised part). Note that 𝐉𝐉 is symmetric because it is diagonal. 

• Kernel or Gram matrix 𝐊𝐊 of order 𝑁𝑁 × 𝑁𝑁, the entries are defined as 𝑘𝑘𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� where 𝑘𝑘(⋅,⋅) is 
the kernel function. 

• Laplacian Matrix 𝐋𝐋 of the constructed graph of order 𝑁𝑁 × 𝑁𝑁. 
 
The proposed model has the following parameters: 
 

• Regularization parameters: 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐼𝐼. 
• Graph parameters:𝜀𝜀,𝜎𝜎2 
• If 𝜆𝜆𝐼𝐼 = 0 it is reduced to the case of classic regularization 

 
The kernel function to be used corresponds to a Gaussian kernel, defined in Formula (4) as 
 

𝑘𝑘�𝐱𝐱𝑖𝑖,𝐱𝐱𝑗𝑗� = 𝑒𝑒−
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�

2

2𝜎𝜎2 .    (4) 
 
 
The penalty term 𝐚𝐚𝑇𝑇𝐊𝐊𝐊𝐊, under the control of the ambient regularization parameter 𝜆𝜆𝐴𝐴 reflects the complexity 

of the approximation function 𝐹𝐹 in the ambient space. In particular, this penalty term can be expressed in terms 
of a reproducing kernel Hilbert space (RKHS) [15], hence the 𝐾𝐾 subscript. The penalty term 𝐚𝐚𝑇𝑇𝐊𝐊𝐊𝐊𝐊𝐊𝐊𝐊, under the 
control of the intrinsic regularization parameter 𝜆𝜆𝐼𝐼 reflects the underlying geometric structure of the input space, 
which is why subscript 𝐼𝐼 [16] is used. This underlying geometric structure can be modeled in different ways, in 
the case of the LapRLS algorithm an undirected weighted graph is used [17].  
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To find the optimum, the total error is derived with respect to a, so that the optimal value is given by 
 

𝐚𝐚∗ = (𝐉𝐉𝐉𝐉+ 𝜆𝜆𝐴𝐴𝐈𝐈 + 𝜆𝜆𝐼𝐼𝐋𝐋𝐋𝐋)−1𝐉𝐉𝑇𝑇𝐝𝐝. 
 

Having found the optimal value of the representation coefficients, the LapRLS method is formally stated in 
Algorithm 1. 
 
 

Algorithm 1 LapRLS Algorithm 
Input: Dataset 𝑋𝑋 with 𝑙𝑙 labeled data points and 𝑁𝑁 − 𝑙𝑙 unlabeled data points; label vector 𝐝𝐝; parameter 𝜀𝜀 for the 
adjacency criterion; parameter 𝜎𝜎2 for weight computation; regularization parameters 𝜆𝜆𝐴𝐴 and 𝜆𝜆𝐼𝐼. 
Output: Optimal coefficients 𝒂𝒂 
function LapRLS 
1. 𝐺𝐺 = build-graph(𝑋𝑋, 𝜀𝜀, 𝜎𝜎2) 
2. 𝐊𝐊 = calculate-gram(𝑋𝑋) 
3. 𝐋𝐋 = calculate-laplacian(𝐺𝐺) 
4. 𝑱𝑱 = get-label-matrix(𝑋𝑋, d) 
5. 𝐚𝐚∗ = (𝐉𝐉𝐉𝐉+ 𝜆𝜆𝐴𝐴𝐈𝐈 + 𝜆𝜆𝐼𝐼𝐋𝐋𝐋𝐋)−𝟏𝟏𝐉𝐉𝑻𝑻𝐝𝐝 
6. return 𝐚𝐚∗ 
end function 

 
Each part of the algorithm is briefly described: 
 

1. Build-graph function: constructs the undirected weighted graph 𝐺𝐺 of 𝑁𝑁 nodes using the adjacency 
criterion and the function for the weights. 

2. Calculate-gram function: calculates the Gramian matrix of the kernel for the data set. 
3. Calculate-laplacian function: calculates the Laplacian matrix of graph 𝐺𝐺. 
4. Get-label-matrix function: obtains the matrix 𝐉𝐉 that indicates the labeled and unlabeled elements. 
5. The optimal coefficient vector is calculated and returned. 
 

The vector of optimal coefficients is used in conjunction with the generalized representation theorem to 
approximate the function 𝐹𝐹𝜆𝜆∗(𝐱𝐱). Then the approximation of the function 𝐹𝐹 at the point 𝐱𝐱 is obtained by the formula 
given by 

 

𝐹𝐹𝜆𝜆∗(𝐱𝐱) = �𝑎𝑎𝑖𝑖∗𝑘𝑘(𝐱𝐱, 𝐱𝐱𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

.   (6) 

 
CASE STUDY 

The problem addressed in this section corresponds to a subproblem within the field of sentiment analysis 
that is relatively simple but illustrative. Specifically, the objective of this case study is to show the 
applicability of the LapRLS algorithm to determine the semantic orientation of a word (i.e. to determine if 
it is a positive or negative word). 

The development of this case study requires elements of linear algebra since words can be represented 
by vectors of real numbers, these vectors are obtained from the frequency analysis on several text sets. The 
text representation model that will be used in this work is word2vec as implemented in the open source 
genism library for Python [18], as detailed in the following paragraphs. 

Figure 1 provides an overview of the steps that will be followed in this case study. In particular, a list of 
words will be converted by word2vec to their respective vector representation. Then, the graph required by 
the LapRLS algorithm will be constructed. Finally, LapRLS will be applied to obtain the semantic orientation 
of each word. 
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Figure 1. Overview of the Case Study. 

 
Some of the words will be previously labeled with their orientation. The data set used has 93 words, of 

which 20 are labeled (10 positives and 10 negatives). For the purposes of this case study, only positive and 
negative cases will be considered, the case of neutral or objective words will be excluded. Neutral cases have 
been omitted because sentiment analysis with a neutral class is a harder problem and many sentiment analysis 
works omit multiclass classification [1]. It should be noted that it would be possible to consider varying 
degrees of semantic orientation, turning this into either a multiclass classification problem or a regression 
problem depending on the nature of these degrees of semantic orientation (discrete vs continuous). However, 
for simplicity only a binary classification case has been addressed in this work, considering potential 
extensions to the other cases as future work. 

Next, the structure of the data set will be explained by an example, consider the following list of words 
in Table 1. 

 
Table 1. List of example words, N/A expresses that a class has not been assigned to it. 

Word Vector Orientation 
Good (0.56, 0.78) +1 
Bad (-0.25, -1.23) -1 

Adequate (0.43, 0.28) N/A 
Adverse (-0.54, -0.76) N/A 
Perfect (1.12, 0.83) N/A 

 
Using the words that have labels as a base, the semi-supervised LapRLS algorithm must be able to predict 

the semantic orientation of the other words without labels. Once the words have been represented as real  𝑛𝑛-
dimensional vectors, the algorithm will work in the same way as presented in the previous chapter. 

Although in practical situations the labels of all the data would not be available, in order to illustrate the 
correct functioning of the algorithm, the results are evaluated by comparing the semantic orientation assigned 
to the word with respect to the true orientation of the term. The evaluation is done by calculating the accuracy 
(𝑎𝑎𝑎𝑎𝑎𝑎) metric, defined as 𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑐𝑐/𝑛𝑛, where 𝑐𝑐 represents the number of correctly evaluated words and 𝑛𝑛 the 
total number of words evaluated. The final result will be expressed in terms of percentages. The result will 
be considered successful if it exceeds 50% accuracy, because that means that it is better than making a 
random choice between both classes. 
 
TEXT REPRESENTATION 

 
In this section, models to represent the text by means of numerical vectors will be discussed. The space 

formed by these vectors is called a semantic vector space. There is an underlying hypothesis shared by all 
models of semantic vector spaces, called the statistical semantics hypothesis: "Statistical patterns of word 
usage can be used to deduce what people are trying to communicate." That is, in vector terms, if the text 
units have similar vectors (where the similarity is expressed in terms of their proximity as vectors in the 
corresponding space), then they tend to have similar meanings [18]. 

The simplest vector representation corresponds to bags of words, in which each word of the dictionary is 
associated with a position in the vector. The element in this position will take the value one if it represents 
that word and zero otherwise. This generates a representation of the words in the space ℝ|𝑉𝑉|×1, where |𝑉𝑉| is 
the size of the dictionary. It can be seen that this representation is not efficient, since it does not capture the 
relationship between words and also generates a sparse representation of the text [1]. To address these 
problems, the conventional approach is to perform a singular value decomposition on a co-occurrence matrix 
𝑋𝑋 [6]. 
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Although these methods provide useful vectors for encoding the semantic-syntactic information of words, 
they are associated with a series of problems. Mainly, the high dimensionality of the space, the cost of 
training, the fact that the matrix is sparsely populated, the sensitivity with respect to the introduction of new 
words in the dictionary and changes in the size of the set of documents [18]. A proposal to solve these 
problems is to create a model that learns in an iterative way and that allows coding the probability of 
occurrence of a word given its context (understanding its context as the set of 𝐶𝐶 words that surround it). The 
learning of this model is based on backpropagation, in which the error is calculated in each iteration and the 
model is corrected accordingly [19]. 

The word2vec method is based on a two-layer neural network to process the text. Its input is the text data 
set and its output is the set of vectors that represent the words in a semantic vector space [19]. The main 
purpose and utility of word2vec are that it allows to group vectors of similar words (semantically and 
syntactically) in the vector space, that is, it detects the similarities mathematically. One of the most 
interesting results of the representation in word2vec is that it is very appropriate to encode different 
dimensions of similarity. The word2vec method encodes each word in a vector and the model is trained with 
respect to the words that surround it (i.e. its context). 

 
RESULTS AND DISCUSSION 

 
The parameters used for the LapRLS algorithm are the following: 𝜎𝜎 = 0.005, 𝜆𝜆𝐴𝐴 = 1.0, 𝜆𝜆𝐼𝐼 = 0.5 and 𝜀𝜀 =

0.01. A simplified version of word2vec has been used. Specifically, the dimensionality of vectors has been 
reduced by principal component analysis (PCA) [20]. Each word is then represented by a two-dimensional 
vector. 

In Table 2 it can be seen that positive words are classified better (the algorithm only failed 9 times out 
of 50), while with negative words the algorithm presents more problems, although mostly it is still more 
accurate than a random choice. Using the information in the table, the accuracy can be calculated, obtaining 
that 𝑎𝑎𝑎𝑎𝑎𝑎 =  67.74%. According to the criterion defined above, this result can be considered as successful. 

 
Table 2. Confusion matrix with the results of the case study. 

Confusion Matrix 
Real class 

Positive Negative Total 

Pr
ed

ic
te

d 
cl

as
s 

Positive 41 21 62 

Negative 9 22 31 

Total 50 43 93 
 

From Table 2 additional performance metrics can be obtained, such as precision and recall. In particular, 
precision is equal to 66.13% and recall is equal to 82.00% for the positive class, while precision is equal to 
70.97% and recall is equal to 51.16% for the negative cases. For positive words this approach has given 
relatively good results, however, for negative words the algorithm has a harder time, specifically, it assigns 
some positive words as negative more often than expected. This could be due to the small size of the dataset, 
which does not allow for an adequate generalization. 

It should be noted that if the Regularized Least Squares algorithm is used without the Laplacian 
component (that is, 𝜆𝜆𝐼𝐼 = 0), the algorithm is unable to distinguish between the two classes. In this case, it 
can only correctly classify the previously labeled examples. All instances without labels are assigned a zero 
value. This is to be expected given the supervised nature of the original algorithm, but it also highlights the 
importance of the internal geometric structure of the data, since adding this information to a relatively simple 
algorithm increases its learning capacity. 

It is possible to make some interesting observations about the obtained graph. First, the graph is 
connected, since it has an algebraic connectivity of 0.0096, which is greater than zero [21]. It should be 
noted that by reducing the value of the parameter 𝜀𝜀 that defines the adjacency criterion, it is possible to 
construct a graph with several connected components. Second, it is also possible to calculate the energy of 
the graph associated with the data, obtaining 𝐸𝐸(𝐺𝐺) = 1.6844. Reducing the value of the parameter ε also 
results in a reduction in energy, due to its relation to the number of connected components. 

One of the possible applications of these results is the construction of a dictionary of opinion words. That 
is a list indicating the semantic orientation of each term. This list can be used by more advanced methods of 
sentiment analysis that allow determining the semantic orientation of complete documents. 
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Considering the difficulty of the problem of sentiment analysis, the following observations should be 
made: 

 
• It is possible that, with a larger data set, the results obtained might be better, because the 

algorithm could extract more information and detect more patterns. 
• The reduction in dimensionality made by analyzing principal components may have impaired 

the classification performance. However, the use of this tool facilitates the visualization of the 
word vectors. 

• It is possible that there might be a different parameterization that allows obtaining better 
classification results. This could be improved by an iterative search on the parameter space. 
However, as mentioned above, the search for optimal parameterization has been considered 
outside the scope of this work. 
 

Even taking into account these observations and that the results are possibly improvable, the case study 
fulfills its objective. It has been shown that the LapRLS algorithm is able to correctly classify the semantic 
orientation (for the most part) of a set of words. The LapRLS algorithm, based on concepts of regularization 
theory, the problem of least squares and spectral graph theory can be applied in the training of a neural 
network for the construction of opinion lexicons. 

The search for the optimal parameterization of the algorithm is considered, in general, a complex problem 
in the field of machine learning. In this particular case, the search for optimal parameterization has been 
considered outside the scope of this work; on the other hand, the illustration of the method and its possible 
practical applications have been emphasized. However, the search process of optimal parameters is briefly 
discussed. 

Although there are some heuristics for the regularization parameters, in general, this process is performed 
empirically [15]. Specifically, a possible strategy to perform this task is a brute force approach in which each 
possible combination of parameters is evaluated, given upper and lower limits for each one, as well as an 
increment for each parameter that together would determine the number of total tests to be performed (i.e., 
a grid search). 

Finally, it is also necessary to comment on the limitations of the LapRLS algorithm. Although it has been 
tested on several real data sets, the predictability of this algorithm comes at the cost of a high computational 
complexity. This is due to the inclusion of the intrinsic regularization term, whose calculation has an 
associated order of magnitude 𝑂𝑂(𝑁𝑁3), where 𝑁𝑁 is the size of the data set (considering labeled and unlabeled 
elements). The high computational complexity of this method makes it difficult to apply it on real data sets 
that have a large amount of data; the development of semi-supervised machine learning methods is an area 
of active research [15]. 

 
CONCLUSIONS 
 

The present work has explored one of the applications of the spectral graph theory on the field of neural 
networks. Specifically, we have studied the LapRLS algorithm, a generalization of the LMS algorithm that 
uses as a foundation the Laplacian matrix of a graph to find the synaptic weights of a neural network. 
Furthermore, this method has been applied in a case study within the field of sentiment analysis, where a 
simplified version of the problems faced in that area has been resolved. 

As mentioned during the development of this work, opinions are central to almost all human activities, 
which is why sentiment analysis is a broad field in which there are numerous applications. A subproblem 
within this field has been explored by applying the LapRLS algorithm. Specifically, the classification of 
words into positive or negative was explored. Although this problem reflects only part of the complexity 
associated with sentiment analysis, it has been useful to illustrate the operation of the LapRLS algorithm. 

Finally, in future work, the search for optimal parameters and a detailed parameter tuning guide for the 
algorithm in this setting would prov ide the first line of research. Furthermore, applying the LapRLS 
algorithm on different and more varied data sets would provide a second line of research.  
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