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High-speed machining is a technique that maintains a high interest in the manufacture of metal parts for the excellent results it
provides, both in surface finish and in economic benefits. In the industry, the tendency is to incorporate data management and
analysis techniques to generate information that helps improve the surface roughness results in machining. A good alternative
to improve the surface quality results in the manufacture of metal parts is using predictive models of the surface roughness. In
this document, we present work done with experimental data obtained from two high-speed machining (HSM) machines with
different types of tools and cutting conditions, conducted under an experimental design with interest in three of factors commonly
studied to generate surface roughnessmodels: tool characteristics, cutting conditions, and characteristics of themachinedmaterial.
Steel and aluminum alloys were used in the experimentation. The results are contrasted with prior experiences that use the same
experimental design but with different soft computing techniques and they are also contrasted with the results of similar previous
works. Our results show accuracies ranging from 61.54% to 88.51% on the datasets, which are competitive results when compared
with the other approaches. We also find the axial cut-depth is the most influential feature for the slots datasets and the hardness
and diameter of the cutting tool are the most influential features for the geometries datasets.

1. Introduction

High-speed machining is a technique that maintains pop-
ularity in the manufacture of metal parts, with high levels
of usability in the metalworking industry to manufacture
metal parts with high levels of quality in surface finish
[1–3]. The surface quality achieved with material removal
techniques is very important in the manufacture of pieces
from alloys of metals and plastic and in general materials that
can be subjected to roughing [4]. The surface quality in a
machined part depends to a large extent on the combination
of factors such as the properties of the machined material,
characteristics of the machining center, and the tool used
[5, 6].

In the industrial field of mechanical cutting, the tendency
is to incorporate data managing and analysis techniques to
generate information that helps improve machining surface
quality [7, 8]. Soft computing techniques help identify factors
that affect the machining process and their most convenient

values to obtain the best surface quality [6], whileminimizing
the associated costs, such as calibration costs, experimen-
tation, and qualities measurement, among others. Surface
quality is often related to surface roughness, although it can
be calculated from several parameters. In practice, the surface
roughness can be evaluated using the parameter roughness
average (Ra) [2, 4, 9, 10]; this is the most common industrial
parameter for this task according to [11] and previous works
such as [10]. The Ra parameter can be measured relatively
simple using profilometers [4, 9].The surface roughness has a
great influence on other factors of interest in manufacturing
such as friction, electrical and thermal resistance, and the
appearance of the machined part, among other factors that
can affect its functionality [12]. Also, surface roughness
can help to establish the relationship between the lubrica-
tion and other elements such as friction or wear between
parts [13]. Friction causes wear between parts (particularly
metal alloys), while ineffective lubrication increases friction;
both of these affect surface roughness [14]. Works such as
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[15–17] present predictive models of surface roughness with
particular conditions of lubricant use.

Surface roughness average is the most used parameter
to estimate the surface quality according to [18]; it is also
important because it provides ideas on surface finish [19,
20] and also provides information on the behavior of a
surface in contact with other surfaces [9, 21]. In the metal
fabrication industry, there are research works that evaluate
the machinability of steel pieces according to parameters that
influence the process, such as the work described in [22].
There are also several works that present surface roughness
predictive models based on soft computing techniques, using
parameters related to the cutting process as predictors, such
as the characteristics of the machine or the characteristics
of the machined material, examples of this type of work in
[4, 6, 9, 16, 23]. A brief description of these works is given in
the following paragraph.

An extended research has been conducted into the
applicability of artificial intelligence and soft computing
techniques for surface roughness prediction in mechanical
cutting over the last years, follow previous works as [15];
the most common configuration (until 2011) was the multi-
layer perceptron (MLP) with a single hidden layer; though
Bayesian networks [4, 9, 21, 23], genetic algorithms [19, 24,
25], and support vector machines [10, 15, 21] have been widely
used for surface roughness prediction.

For example, in [10] the decision trees, Naive Bayes,
Nearest Neighbors Classifiers, Multilayer Perceptrons, and
Logistic Regression were used to generate methods for the
early detection of multitooth tool breakages in the milling
process. Decision trees have been used in conjunction with
sound signal analysis in [26] in order to generate a predictive
model of surface roughness. Also, fuzzy logic is used to
generate predictive models of surface roughness in [27, 28].
Another example is the work described in [16], where a
predictive model of surface roughness in deep drilling opera-
tions under high-speed conditions of steel molds was created
using Bayesian networks. Furthermore, Bayesian networks
were used in [4, 9] and a combination of Bayesian networks
and Tree-augmented Network algorithms was used in [23] to
generate a preprocessingmodel of surface roughness onhigh-
speed machining (HSM) over metal probes.

The profitability of metal cutting operations depends to
a great extent on factors such as precision in mechanical
cutting, excellent surface finish, and minimum wear of the
tool [14, 29]. All the relationships between surface roughness
and factors such as lubrication, friction, and the mechanical
force applied to the cutting process are closely linked and this
is currently a point of great interest in the companies and the
profitability of mechanical cutting [30, 31].

There are multiple works on the literature that use soft
computing to estimate surface roughness or to study the fac-
tors that can affect surface roughness. However, in our review
of the literature for this work, there were few works that used
decision trees and to the best of our knowledge, no previous
works with the specific technique of Gradient Boosted Trees
to generate a predictive model of surface roughness.

This document presents a surface roughness prediction
model that considers a subset of elements involved in the

milling process that is related to the machined piece, the
tool, and characteristics of the machine tool. To generate
the predictive model of surface roughness, metal alloy pieces
commonly used in the industry have been employed.Thedata
used to generate the model are the result of experiments on
two different machines and, in each one, various combina-
tions of variables that typically influence the surface quality
results in the milling process have been used.

The rest of the document is structured as follows.
Section 2 details various concepts and related works in
the field of predicting surface quality and machining, it
also details predictive models, in particular, and it focuses
on Gradient Boosted Trees. Section 3 details the materials
and methods used in this work, presenting the experimen-
tal description, the implementation, and evaluation of the
models, as well as their parametrization. Section 4 presents
the results obtained with the implemented models along-
side a comparison with other methods. Section 5 contains
a discussion of the obtained results and the comparison
with other state-of-the-art methods. Section 6 closes with
the conclusions of this paper and potential future lines of
works.

2. Concepts and Related Works

2.1. Surface Quality and Machining. The surface quality or
surface roughness is intimately connected with the appear-
ance of the machined or manufactured surface, which is
normally expressed with a Ra value [3, 11]. In many cases,
surface quality must comply with established standard values
to be functional in certain industries (such as in the molds
used to manufacture parts with plastic injection [16]). There
are several parameters to establish the surface roughness
value. The surface roughness average is the most widely used
in the industry thanks to the ease with which it can be
assessed (generally after processing) and the closeness with
which it represents the surface texture of the mechanized part
[32, 33].

The Ra value is usually calculated by integrating the
arithmetic mean of the absolute values of ordinates f (x)
within a sampling length (L). Each partial value of surface
roughness can be measured using profilometers along the
length of sampling L.The standard 4288 (1996) is the interna-
tionally used way tomeasure surface roughness inmachining
processes and this standard is further complemented with
the standard 1302 (1992) which establishes 12 levels of surface
roughness; these levels range from 0.006 to 50 nanometers
(nm) [34].

Although low-speed machining can provide better sur-
face roughness, it reduces the efficiency of the industry,
implies more machining time, and consequently increases
production costs [5]. High-speed machining is one of the
processes with the greatest economic impact in the metal
fabrication industry [2], thanks to the high level of surface
finish that can be obtained with it [4], which influences the
functional behavior of the resulting piece when subjected to
friction, abrupt temperature changes, and other factors that
may affect its functioning [6].
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Currently, there is plenty of facemilling research aimed at
predicting surface roughness, a parameter that will decrease
with respect to changes in other parameters like increased
tool wear or flank wear, cutting force, depth-cut, or feed per
tooth.There are several works that have been presented in the
last 5 years in the topic of predicting surface roughness based
on artificial intelligence techniques. For example, on [22],
probes of AISI 4340 steel were used and cutting speed; feed
and cut-depth were considered as the governing parameters
for surface roughness prediction, while workpiece surface
temperature, machining forces, and tool flank wear were
taken as measures to check the performance of the estima-
tion. In [30] 100CrMoV5 steel molds were machined with
minimumquantity lubrication (MQL) and tool lifetime, flank
face, and cutting speed were used as predictive variables.

Fuzzy logic and regression analysis were used in [28] for
an empirical model for surface roughness and this model
was used to calculate the influence of surface roughness
predicted over the product profile of surface finish in a face
milling process. Random forests, regression trees, and radial-
basis functions were used in [35] to estimate the adequate
thresholds values required to avoid rapid tool wear and
predict the finish quality on a flat surface using face milling.
In the same way, the relation between face milling (over
steel-45 workpieces) and parameters like tooth flank, cutting
speed, and feed was studied in [36]. Genetic algorithms and
the Grey Wolf Optimizer algorithm were used in [24] to
generate a prediction of surface roughness in ball-endmilling
over X210CR12 steel. Some of the works described above use
postprocessing techniques to estimate the surface roughness
(i.e., [22, 30, 37]), while others, such as [24, 28, 35], apply the
techniques to estimate surface roughness in-process.

Furthermore, in [38] the authors present a comparative
work of milling models on aluminum alloys A7075 with a
diamond-like coating (DLC) tool and tool without DLC; the
models were made with the aim of predicting the least wear
of the tool.The results were experimentally better when using
the tool model with DLC. Also, in [37] a model is presented
that relates to the influence of factors such as tool wear and
flank wear with the surface quality.

In spite of the high number of works, such as those
described above, the in-process measurement of surface
roughness is difficult and often unfeasible. Therefore, as it has
been said in the introduction, having techniques to predict
surface quality using postprocess data is a way of working that
is gaining interest in the parts manufacturing industry. In this
sense, predictive models have much to contribute.

2.2. Predictive Models. In artificial intelligence, predictive
tasks are one of the central topics of machine learning that
involves inducing a model from training data (known as
training instances), then this model can be applied to future
instances to predict a target variable of interest [39]. There
are several prediction algorithms, such as Logistic Regression,
neural networks, decision trees, Bayesian networks, among
others. These algorithms typically induce a model to learn
to predict the best value of a target variable from training
instances of a domain, with the aim of finding an optimal

value of the target variable in all future instances of the said
domain [40].

Many scientific articles in the literature work with predic-
tive algorithms and particular training instances in a domain
selected according to research interests. One advantage of
working with training instances in a domain is that the
predictive algorithm will find a more precise model that can
generate good values of the target variable in the presence of
new data.

There are several recent works in which artificial intelli-
gence techniques are used to estimate the surface roughness
in machining. In [26] a proposal for a semisupervised
approach to the development of roughness prediction mod-
els, based on machine learning, is described; also, in [31] a
modular road roughness classification system operates with
the vehicle’s transfer functions (according to ISO 8608) is
described; for example [16] applies Bayesian networks in the
context of turn-milling using steel to generate a prediction
of surface roughness. Also, in [4] neural networks are used
for the same purpose. In [6] genetic algorithms were used
for the prediction of surface roughness in micromachining
of Copper C360. These artificial intelligence techniques have
been shown to be able to generate predictive models with
excellent accuracy even in with a lack of available data in a
domain through the identification of patterns in the data [18].

2.3. Decision Trees. Learning based on decision trees is a
type of predictive model that uses a decision tree to go from
observations of an object (represented as the branches of
a tree) to a certain conclusion about a target value of the
object (represented by the tree leaves). It is used in statistics,
data mining, and machine learning and has had several
applications, both at the academic level and in the industry
[41].

This classifier is one of the easiest modeling techniques
to interpret thanks to its graphic representation; they are
didactic and easy to understand. They base their predictions
on inductive learning; that is, they consider the values that
the different attributes or variables take, creating in this way,
a series of rules to be able to determine what value the
dependent variable will take based on certain situations. It
should be noted that the results delivered by the decision tree
depend to a large extent on the volume of data contained
in each category. The accuracy of the model with respect to
reality will be better the greater the amount of data available
of that combination of features.

Finally, in the industry of crafting pieces from machine-
cutting, it is highly important to also obtain information
about the factors that affect surface roughness and to also
have the ability to influence such factors. In particular,
decision trees are a useful technique to explain the aforemen-
tioned information, according to the works of [21, 42]. In this
work, we have selected a boosting model based on decision
trees, explained in the next section, to develop our models.
This approach is appropriate since we are interested in both
predicting surface roughness and explaining the relationships
and influences among the different factors affecting the
cutting process.
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Table 1: Variables used in the study including symbols, units, and values/ranges.

Variable Symbol Unit Values/Ranges

Axial Depth of Cut ap mm Exp-1 = {0.2, 0.4, 0.6, 1}
Exp-2 = {5, 10}

Advance Speed-Feed Rate F mm/min Exp-1 = {1500, 1875, 2250, 2625}
Exp-2 = {500, 675, 750}

Diameter of the Tool diam mm Exp-1 = {6, 8, 10, 12}
Exp-2= {10, 12, 16, 20}

Hardness of the Material HB 85-150

Rotating Speed n rpm Exp-1 = {5000, 6250, 7500, 8750}
Exp-2 = {8000, 9600, 712000, 15000}

Radial Depth of Cut ae mm Exp-2 = {0.5, 1}

Number of Teeth flutes Exp-1 = {2, 6}
Exp-2 = {4}

2.4. Gradient Boosted Trees. The term boosting refers to a
family of algorithms that convert weak learners into strong
learners, understanding that a weak learner is only slightly
better than a random choice, while a strong learner has
an almost perfect performance [5]. The Gradient Boosting
model is a machine learning technique that can be used in
both regression and classification problems. This approach
produces a predictive model in the form of an ensemble
from weak predictive models, which normally correspond
to decision trees as in the particular case used in this
work (Gradient Boosted Trees (GBT)). This method builds
the model in stages like other boosting methods but also
generalizes these by optimizing an arbitrary differentiable
loss function [43].

There are many works that use artificial intelligence
techniques. The Gradient Boosting model is a machine
learning technique that can be used in both regression and
classification problems. The techniques of gradient boosting
use an ensemble of weak models, in the case of this work
trees, which together allow forming a stronger model. The
ensemble is constructed in a stage-wise process by gradient
descent in function space. The final model is a function that
takes as input a vector of attributes 𝑥 ∈ 𝑅𝑛 to get a score
𝐹(𝑥) ∈ 𝑅 so that 𝐹

𝑖
(𝑥) = 𝐹

𝑖−1
(𝑥) + 𝛾

𝑖
ℎ
𝑖
(𝑥), where each ℎ

𝑖

is a function that models a single tree and 𝛾
𝑖
∈ 𝑅 is the

weight associated with the 𝑖-th tree, so that these two terms
are learned during the training phase [43].

On the other hand, one of the reasons for using GBT in
contrast to other predictive models is that ensemble methods,
in general, are usually the classifiers/regressors that deliver
the best out-of-the-box results. In addition, considering that
the basic model used to study the problem has been a
classic decision tree, it has been considered natural to use its
extension by means of an ensemble method.

One of the advantages of ensemble models is that their
tuning process is reliable and easy when compared to other
approaches such as artificial neural networks [3]. On the
other side, a potential disadvantage of ensemble methods is
the lack of interpretability [42]; however, this problem is also
shared by other models such as neural networks, and in the
case of GBT this can be ameliorated because of the ability to

easily extract the importance of each feature, as done in this
paper.

3. Materials and Methods

High-speedmachining is a type of milling operation. Milling
is defined in previous works [44] as the process in which the
cutting tool rotates at a fixed speed while linearly moving in
a perpendicular direction to the axis of the tool.

On the field of machining processes, there are many
inputs and parameters that have an influence on the resulting
surface roughness; some of them can be controlled while
others cannot be directly controlled [2]. The datasets from
these processes are usually of limited size, mainly due to the
high costs of machining tests [44]. This section describes
the experimentation parameters and the sizes of the used
datasets. Thus, we now present an overview of our method-
ology for replicability considerations:

(1) Experiment Preparation. Two different kinds of
experiments (Exp-1 and Exp-2) were implemented.
Accordingly, two types of probes have been used. For
Exp-1, we prepared test pieces of steel F-114 (F-114 is
the Spanish notation for this steel (http://www.splav-
kharkov.com/en/e mat start.php?name id=87) with
175-220 Brinell of hardness) with dimensions of
190x100x20 mm. For Exp-2, we prepared test pieces
of aluminum known as Planoxal (hardness 85-150
Brinell), with dimensions of 180x110x20 mm. Since
aluminum is more malleable than steel, in Exp-2 it
was important to know the hardness of the material,
and so the hardness (HB) was measured before the
process in each test specimen of Exp-2.

(2) Experimentation. This step consists of performing the
milling for each one of the prepared experiments. The
different setup of Exp-1 and Exp-2 are made using all
the combinations of values for the predictor variables,
these are described in Table 1. In all cases, the surface
roughness was measured with the Karl Zeiss Surfcom
130 stylus profilometer.

http://www.splav-kharkov.com/en/e_mat_start.php?name_id=87
http://www.splav-kharkov.com/en/e_mat_start.php?name_id=87
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(3) Preprocessing. In this step, the Exp-1 and Exp-2
datasets are prepared. In detail, this step consists of
computing the average values of surface roughness
(Ra) and associating this result with the experi-
mental conditions (i.e., the values of the predictor
variables).

(4) Model Generation. In this step the models for Exp-1
and Exp-2 are generated through machine learning;
the details are in Sections 3.2 to 3.4.

(5) Analysis of Results. This analysis is done in two
dimensions: (1) checking the quality of the models
and (2) validating its practical utility. For (1), classical
machine learning metrics (e.g., recall, precision, and
accuracy) were used to measure the performance
obtained in the classification of surface roughness.
For (2), the validation is done by comparing results
(theGBTmodels) with other classifiers that have been
used in the literature.

3.1. Experimental Description. As mentioned before, two
different experiments were designed to obtain the exper-
imental data: one for machining slots on steel F-114 test
specimens (Exp-1) and another for machining geometries
using aluminumalloy (Exp-2). Each of these two experiments
was performed initially in a machining center and later in a
second machining center with different characteristics to the
first, to validate the experimental design and the predictive
model of surface roughness obtained in the first machining
center. Also, in both experiments the machining centers
were equipped with high-pressure coolant fluid: Houghton
HOCUT b-750 cutting oil at 5%, a type of coolant fluid
frequently used in the industry for its high quality and
anticorrosive properties [45].

Predictive models have been used by authors on this
domain in order to analyze the behavior of machines in
particular cutting conditions. For example, Pimenov et al.
[35] declare that a predictive model of surface roughness has
the ability to understand newmachining working conditions.
In our case, predictive models help us analyze the value of
surface roughness in new experimental cases. A descriptive
model is not adequate in this case because it does not directly
provide the ability to predict new cases.

The experimentation in HSM is generally expensive;
thus, for the experimentation described in this paper the
experimental model described in [9, 23] has been used and
the same machining centers described in [9]. In detail, the
first process of obtaining experimental data was performed
with aKondia HS1000machining center (hereinafter referred
to as M1) with CNC Siemens 840D, axis = 3, spindle speed of
24000 rpm, and maximum power of 17.5 KW and the second
on a Versa model machine (variant 675004) (hereinafter
referred to as M2) with CNC Heidenhain TNCi530, axis
= 5, Spindle speed of 15000 rpm, and maximum power of
50.0KW.

In each of the experiments (Exp-1 and Exp-2) conditions
were set related to the tool, machine (cutting conditions),
and material to be machined or test specimen. In that order,
said characteristics are described below for each experiment.

Table 1 shows the information of the variables used on Exp-
1 and Exp-2; the symbol, units, and admitted values are
described for each variable.

Exp-1 was designed to generate linear cuts over steel
probes and measure surface roughness on a linear surface;
the tool characteristics were its diameter and the number of
flutes. Karnasch tools (models 30.6455 and 30.6465) of differ-
ent diameters were used. Considering standard machining of
slots in the manufacture of molds, four different diameters
of tools were used: 6,8,10 and 12 mm, and for each type
of diameter, variations of 2 and 6 flutes were used per tool
(flutes). Two slots lengths were made for each diameter and
flutes variation (2x4x2), for a total of 16 experimental-tool
combinations.

The characteristics of the cutting conditions are the
axial depth of cut (ap), advance speed/feed rate (F), and
spindle rotation speed (n). The machining of slots was done
with F = 1500 mm/min and n = 5000 rpm initially, and
then increments of 25, 50, and 75% of the initial F and n
were applied. For each of the experimental-tool combination
(described above) variations of ap (0.2, 0.4, 0.6, and 1.0),
F (1500, 1875, 2250, and 2625), and n (5000, 6250, 7500,
and 8750) were applied (see Table 1). Thus, the complete
experimental set included 124 different conditions. All the
tests were repeated on each cutting-machine to increase the
amount of data to obtain a dataset of 270 samples for M-
1 and 150 samples for Machine-2; for each experiment the
incomplete records were removed leaving a training dataset
of 251 records and 123 records, respectively.

Examples of combinations of the variables described
above (Table 1) are shown in Table 2; these values correspond
to the parameters used in the tests and to the calculation
of the surface roughness (postprocess) according to the way
of calculating the Ra value described in the introduction. In
synthesis, for Exp-1, five predictive variables and the surface
roughness class were used. Both the class and the rest of the
continuous variables were discretized as shown in Table 2
and based on the experimental design and the discretization
described on previous works such as [4, 9, 16, 23].

In order to calculate the surface roughness average (Ra),
partial values of surface roughness in a slot were measured.
In order to do this, contact profilometers were used such as
described in [4, 23]. For each slot, four partial measurements
of surface roughness were made, then a final value of
surface roughness per slot was obtained by averaging. The
continuous values of surface roughness were grouped in
ranges; these ranges were created based on the following
criteria: next value = (previous value + 60% previous value)
+ dX, where dX is a variation that considers the error margin
from contact measurement (by manual profilometer).

In accordance with ISO: 4288 (1996) and ISO: 1302
(2002), there are several discrete values for Ra that are related
to continuous values (all values in nanometers) [4, 23]: 0.10 =
Mirror, 0.20 = Polished, 0.40 = Ground, 0.80 = Smooth, 1.60
= Fine, 3.20 = Semifine, 6.30 = Medium, 12.50 = Semirough,
and 25.0 and 50.0 = Clear. Thus, in accordance with previous
works such as [4, 9, 16, 23], the labels Smooth, Fine, Semifine,
and Medium were created for surface roughness average as
shown in Table 2. Ra values greater than 10.1 were discarded
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Table 2: Examples of machining cutting conditions and Ra values in Exp-1.

Machine diam
(mm) flutes ap

(mm)
F

(mm min−1)
n

(rpm)
Ra
(nm)

1

6 2 0.2 1500 5000 Smooth
6 6 0.4 1500 6250 Smooth
8 2 0.6 1875 5000 Semi-Fine
8 6 1 2250 6250 Smooth
10 6 0.2 2625 5000 Semi-Fine
10 2 0.4 1875 8750 Fine

2

6 2 0.2 2250 5000 Smooth
6 2 0.4 2250 7500 Semi-Fine
6 6 0.6 1500 8750 Smooth
8 2 1 1875 6250 Fine
8 6 0.2 2250 5000 Smooth
10 6 0.4 2625 7500 Smooth

Table 3: Discretization of variables of the Exp-1 model.

State F n ap Ra
[lower, upper) [lower, upper) [lower, upper)

0 [1000, 1500] [4000, 5000] 0.2 Smooth = [0.70, 1.59]
1 (1500, 1875] (5000, 6250] 0.4 Fine = [1.6, 3.20)
2 [1875, 2250] (6250, 7500] 0.6 Semi-Fine = [3.20, 6.30)
3 [2250, 2626) (7500, 8750) 1 Medium = [6.30, 10.10]

because these values are of little use for the metal parts
manufacturing industry or the aerospace industry. Examples
from the datasets and the discrete values of surface roughness
average are shown in Table 2. Table 3 shows the ranges and
discrete values for variables and for the surface roughness
average in the case of the slots.

Exp-2 was designed to generate nonlinear cuts (geome-
tries) to measure surface roughness on a radial surface. The
tool characteristic was tool diameter (diam); tools Karnash
of different diameters (10, 12, 16, and 20 mm) were used, but
the same number of flutes (4 flutes).The characteristics of the
cutting conditions for Exp-2 are ae, ap, f, and n (see Table 1).
For Exp-2, circumferences with a radius of 3.5 cm and height
of 1,5 cm were initially considered and two different radial
cut-depths were made (1 mm and 0.50 mm).

The machining of geometries was performed with n =
8000 rpm initially; after making increments of 20% for each
subsequent value the set n = {8000, 9600, 12000, 15000} was
generated. Also, the initial value of F was 500 and two
representative values based on the analysis of previous exper-
imental results were selected; thus, the set F = {500, 675, 750}
was considered.

As it has been said above, the surface roughness labels
were assigned in accordance with the average roughness
established in ISO: 4288 and ISO: 1302 (see Table 3). For
each machined circumference, six partial measurements of
surface roughness were made, then, a final value of surface
roughness per geometry was obtained by averaging. Thus,
the complete experimental set for geometries included 164
different conditions. As discussed in the previous description

of Exp-1, all the tests were repeated on each cutting-machine
to increase the amount of data. After excluding incomplete
data, a total of 431 records were obtained for M-1 and a
total of 242 records were obtained for M-2. Examples from
the datasets and the discrete values of surface roughness are
shown in Table 4.

A summary of both the class labels and the continuous
variables discretization (described above) is shown in Table 5.
As a summary, Table 6 shows values related to the class and
the dataset in each case.

3.2. Implementation of the Models. To obtain the models
described above, RapidMiner Studio 7.6 � (free version) will
be used. This tool allows for obtaining various machine
learning models from the data [46]; in particular, we can use
it to build GBT models. The workflow used with this tool is
shown in Figure 1. This process is applied to each one of the
four distinct datasets evaluated.

The datasets have been acquired following the experi-
mental design described in [9, 23] and those datasets have
been prepared as described in Section 3.1 of this document.
Therefore, the workflow in this work starts in the Read Data
task (see Figure 1).

3.3. Evaluation of the Methods. In this research, a series
of methods will be evaluated, measuring the performance
obtained in the classification of the variables of interest. The
different evaluation metrics to be used in this work will be
detailed below; in particular, the performance indicators to be
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Table 4: Examples of cutting conditions of geometries and Ra values in Exp-2.

Machine F
(mmmin−1)

diam
(mm)

ae
(mm)

ap
(mm) HB n

(rpm)
Ra
(nm)

M1

500 10 10 10 111 8000 Smooth
675 10 10 5 110 8000 Smooth
750 10 5 10 111 8000 Smooth
550 12 10 5 112 8000 Smooth
675 12 5 10 111 8000 Fine
750 12 5 5 110 8000 Fine
500 12 10 10 111 9600 Fine
675 12 5 5 111 9600 Fine
750 12 10 10 111 9600 Fine

M2

500 12 10 10 85 12000 Smooth
675 12 10 5 85 12000 Smooth
750 12 10 10 85 15000 Fine
500 16 10 5 85 15000 Smooth
675 16 5 10 85 15000 Smooth
750 16 5 5 85 15000 Smooth
500 20 5 10 85 15000 Smooth
675 20 5 5 87 15000 Smooth

Table 5: Discretization of the continuous variables of the Exp-2 model.

State HB ae ap Ra
[lower, upper) [lower, upper)

0 [85, 100) 0.5 5 Smooth = [0.7, 1.6)
1 [100, 115) 0.5 5 Fine = [1.6, 3.2)
2 [115, 130) 1 10 Semi-Fine = [2.1, 4.1)
3 [130, 145) 1 10 Ground = [4.1, 6.1)

Table 6: Additional information for each dataset.

Data set Description of the data

Slots

Maximal number of slots per test piece: 31
Minimum number of slots per test piece: 15

Number of experiments (4 variations of ap for each slot): 462
Number of partial measurements of surface roughness: 1848

Geometries

Maximal number of geometries per test piece: 8
Minimum number of geometries per test piece: 6

Number of experiments (2 variations of ae for each geometry): 768
Number of partial measurements of surface roughness: 1638

Grid Search with
Cross Validation

Read Data

80% data

Split Data
80/20 20% data

Apply
Model

Evaluate
Model

Optimal
Model

Figure 1: The workflow implemented in RapidMiner.
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Table 7: Confusion matrix.

True Class
Positive Negative

Predicted Class Positive 𝑎 𝑏

Negative 𝑑 𝑑

used to compare methods are recall, precision, and accuracy.
These metrics are standard in the machine learning literature
and the presentation made in the following paragraphs is
based on the work of Sammut [47].

Based on the data obtained in the experiments, we will
obtain a confusion matrix. This matrix will facilitate the anal-
ysis needed to determine where classification errors occur.
The confusion matrix is a table that shows the distribution of
errors in the different categories. The performance indicators
necessary to evaluate the performance of the classifier to be
implemented, specifically accuracy, recall, and precision, will
be calculated using this matrix. An example of the structure
of this matrix is shown in Table 7 for the case of two classes
(positive and negative in this example).

a is the number of correct predictions for positive
instances, b is the number of incorrect predictions for neg-
ative instances, c is the number of incorrect predictions for
positive instances, and d is the number of correct predictions
for negative instances. The simplest indicator to evaluate the
performance of a classifier is accuracy (𝑎𝑐𝑐), corresponding
to the ratio of correctly classified examples on the total of
examples in the dataset [48].This indicator can be calculated
based on the data of the confusion matrix according to (1) (it
is assumed that the dataset is not empty).

𝑎𝑐𝑐 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
(1)

The other indicators, that is, precision and recall, are under-
stood as measures of relevance. Precision is the proportion of
true positives (a) among the elements predicted as positive.
Conceptually, precision refers to the dispersion of the set of
values obtained from repeated measurements of a quantity.
Specifically, a high precision value (𝑝) implies a lowdispersion
in the measurements. Recall (𝑟) is the proportion of true
positives predicted among all elements classified as positive,
that is, the fraction of relevant instances that have been
classified. Precision and recall are calculated according to (2)
and (3) (assuming 𝑎 + 𝑏 ̸= 0 and 𝑎 + 𝑐 ̸= 0, respectively).

𝑝 =
𝑎

𝑎 + 𝑏
(2)

𝑟 =
𝑎 + 𝑑

𝑎 + 𝑐
(3)

Recall and precision and particularly well-suited for unbal-
anced datasets [10].Thus, given the unbalanced nature of our
data, these metrics are appropriate for the evaluation of the
dataset. Meanwhile, accuracy is not necessarily useful in the
case of unbalanced data (e.g., it is easy to create an “accurate”
classifier by choosing the most recurring class, but this would
hardly be useful); however, it allows obtaining a general view

of the performance of our models when taken in the context
of the other metrics.

3.4. Parameterization of the Models. The original data was
split into 80% for training and hyperparameter tuning and
20% for testing the final model in order to obtain an unbiased
estimate. The optimal model was found using K-fold cross-
validation with 3-folds and using a grid search. For GBT the
optimized parameters were

(i) number of trees: {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
(ii) maximal depth: {1, 2, 3, 4, 5, 6, 7, 8};
(iii) minimum rows: {4, 5, 6, 7, 8, 9, 10}.

There are other parameters in this model that remained fixed
for simplicity and thus they were not optimized. In particular,
they are the number of bins (20), the learning rate (0.1), and
the sample rate (1.0).The optimal hyperparameters alongside
its accuracy on cross-validation and the test set are shown in
Table 8.

4. Results

4.1. Gradient Boosted Trees for Slots. The results obtained are
shown for the slots dataset of both machines with the models
given by GBT; both the confusion matrices and the models
obtained in each case are presented. Table 9 shows the results
obtained with GBT for the slots dataset of M-1. The final
accuracy is 78.00% on the test set. The results seem to be
mainly balanced; however, the Semifine class presents the
lowest precision and recall of each one of the classes.

Table 10 shows the importance of each of the variables
with respect to the slots dataset M1. As can be seen here, the
most important variable corresponds to axial cut-depth (ap),
followed by the rotation speed (n). On the other hand, the
diameter of the tool (diam), the feed rate (F), and the number
of teeth (flutes) are considered less relevant for a prediction
according to the analysis carried out in this dataset, since they
take importance values of around 20% or less.

Table 11 shows the results obtained with GBT for the slots
dataset of M-2. In particular, it should be noted that the
final accuracy is 61.54%, the lowest one in all the performed
experiments.The failure of themodel seems to occur with the
Semifine class, which by analyzing the results of the confusion
matrix seems to be hard to distinguish from the Fine class.

Table 12 shows the importance of each of the variables
with respect to the M2 slots dataset. As can be seen here,
the variable of greater importance corresponds to the axial
cut-depth (ap) and then the diameter of the tool (diam) in
second place. Noting that all other variables, except those
two, provide an importance value lower than 20%, they are
considered of less importance for the predictive capacity in
this model.

4.2. Gradient Boosted Trees for Geometries. The results
obtained for the geometries dataset of bothmachines with the
models given by GBT are shown below; both the confusion
matrices and the models obtained in each case are presented.
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Table 8: List of hyperparameters used for both machines with each model and general results.

Experiment Number of
Trees (per class)

Maximal
Depth

Minimum
Rows

Accuracy on Grid
Search

Cross-Validation

Accuracy on
Test Set

Slots (M1) 40 4 5
82.51% +- 1.76%
(82.50% micro

average)
78.00%

Slots (M2) 60 6 4
89.67% +- 4.64%
(89.62% micro

average)
61.54%

Geometries
(M1) 100 8 10

87.51% +- 2.93%
(87.50% micro

average)
88.51%

Geometries
(M2) 40 4 8

89.57% +- 0.74%
(89.58% micro

average)
85.71%

Table 9: Confusion matrix for the slots dataset M1 (GBT).

True Smooth True Fine True Semi-Fine True Medium Class Precision
Pred. Smooth 6 0 0 0 100.00%
Pred. Fine 3 19 4 0 73.08%
Pred. Semi-fine 1 1 6 2 60.00%
Pred. Medium 0 0 0 8 100.00%
Class Recall 60.00% 95.00% 60.00% 80.00% Acc: 78.00%

Table 10: Importance of the variables for the slots dataset M1.

Variable Importance Relative Importance Percentage (%)
Axial Depth of Cut 219.5075 1.0000 47.15%
Ration Speed 107.3826 0.4892 23.06%
Diameter of the Tool 86.7459 0.3952 18.63%
Advance Speed 49.5846 0.2259 10.65%
Number of Teeth 2.3563 0.0107 0.51%

Table 11: Confusion matrix for the slots dataset M2 (GBT).

True Smooth True Fine True Semi-Fine True Medium Class Precision
Pred. Smooth 2 1 0 66.67% 2
Pred. Fine 0 12 4 75.00% 0
Pred. Semi-fine 0 5 2 28.57% 0
Class Recall 100.00% 66.67% 33.33% Acc: 61.54% 100.00%

Table 12: Importance of the variables for the slots dataset M2.

Variable Importance Relative Importance Percentage (%)
Axial Depth of Cut 62.5060 1.0000 38.09
Diameter of the Tool 51.2562 0.8200 31.23
Rotation Speed 23.4585 0.3753 14.29
Number of Teeth 17.0898 0.2734 10.41
Advance Rate 9.8038 0.1568 5.97

Table 13 shows the results obtained with GBT for the
geometries dataset of M-1. In particular, it should be noted
that the final accuracy is 88.51%. The best classification
obtained has been for the label “Fine”, with a 100% of
precision for the 97.22% of the total of the cases for this

classification. Note that again the metrics present a good
performance for a problem of four classes (compared to
a random choice classifier). The results, in this case, seem
to be mostly balanced, with no class bringing down the
performance in a major way.
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Table 13: Confusion matrix for the M1 geometries dataset (GBT).

True Smooth True Fine True Semi-Fine True Medium Class Precision
Pred. Smooth 23 3 0 0 88.46%
Pred. Fine 0 12 1 3 75.00%
Pred. Semi-fine 0 0 35 0 100.00%
Pred. Medium 2 1 0 7 70.00%
Class Recall 92.00% 75.00% 97.22% 70.00% Acc: 88.51%

Table 14: Importance of the variables for the M1 geometries dataset.

Variable Importance Relative Importance Percentage (%)
Hardness of the Material 413.6821 1.0000 45.82
Diameter of the Tool 188.2179 0.4550 20.85
Advance Speed-Feed Rate 122.5317 0.2962 13.57
Rotation Speed 118.9302 0.2875 13.17
Radial Depth of Cut 39.7190 0.0960 4.40
Axial Depth of Cut 19.8198 0.0479 2.20

Table 15: Confusion matrix for the M2 geometries dataset (GBT).

True Smooth True Fine True Semi-Fine True Medium Class Precision
Pred. Smooth 6 0 0 0 100.00%
Pred. Fine 3 14 0 2 73.68%
Pred. Semi-fine 1 0 14 0 93.33%
Pred. Medium 0 1 0 8 88.89%
Class Recall 60.00% 93.33% 100.00% 80.00% Acc: 85.71%

Table 16: Importance of the variables for the M2 geometries dataset.

Variable Importance Relative Importance Percentage (%)
Diameter of the Tool 169.6404 1.0000 33.13
Rotation Speed 119.9600 0.7071 23.42
Hardness of the Material 97.2817 0.5735 19.00
Radial Depth of Cut 92.2594 0.5439 18.02
Advance Speed-Feed Rate 17.5635 0.1035 3.43
Axial Depth of Cut 15.4129 0.0909 3.00

Table 14 shows the importance of each one of the variables
with respect to the M1 geometries dataset. As can be seen
here, the most important variable corresponds to the hard-
ness of the material (HB), followed by the diameter of the
tool (diam). The rest of the variables seem to be less relevant
according to the analysis carried out in this dataset, being
below a 20% of importance on this experiment.

Table 15 shows the results obtained with GBT for the
geometries dataset of M-2. In particular, it should be noted
that the final accuracy is 85.71%. Similar to the results of the
classification in M1, the best classification obtained has been
for the label “Fine”, with a 93.33% of precision for the 100%
of the total of cases. In general, the result of M2 is similar to
the one from M1. Again, in this case, there does not seem to
be any class that is bringing the classification results down
in any major way. Although the precision of the Fine class is
lower than the other ones, the recall of the Smooth class is
also comparably lower than the results of the other ones.

Table 16 shows the importance of each of the variables
with respect to the M2 geometries dataset. As can be
seen here, the most important variable corresponds to the
diameter of the tool (diam) and then rotation speed (n). All
the other variables have a lower than 20% importance, with
“feed rate” and “ap” being particularly low. Note that “ap” is
the variable of least importance in both machines, while the
diameter seems to be important in both cases.

Figure 2 summarizes the importance of the variables
according to the GBM models used for all experiments and
machines. In particular, Figure 2 shows that in Exp-1 the
axial depth of cut (ap) is the most important variable, but
for Exp-2 the hardness of the material (HB) and diameter of
the tool (diam) are the most important variables, although
arguably the rotation speed (n) could be considered impor-
tant too, depending on the machine. These results highlight
the importance of the particular characteristics of each one of
machining centers, because despite using the same working
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Importance Exp-1 M1
0%

11%
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23%

47%

Axial Depth of Cut
Ration Speed
Diameter of the Tool
Advance Speed
Number of Teeth

Importance Exp-2 M1

Hardness of the Material
Diameter of the Tool
Advance Speed - Feed Rate
Rotation Speed
Radial Depth of Cut
Axial Depth of Cut

2%
4%

13%

14%

21%

46%

Importance Exp-1 M2

38%

31%

14%

11%

6%

Importance Exp-2 M2

3%4%

18%

19%

23%

33%

Hardness of the Material
Diameter of the Tool
Advance Speed - Feed Rate
Rotation Speed
Radial Depth of Cut
Axial Depth of Cut

Axial Depth of Cut
Ration Speed
Diameter of the Tool
Advance Speed
Number of Teeth

Figure 2: Pie charts for the importance of variables in each experiment and machine.

model in both machining centers (same forces, “ap”, etc.) the
results are very different in each case.

4.3. Comparison with Other Methods. We compare the GBT
models with other classifiers that have been used in the
literature, such as SVM with RBF kernels or other powerful
classifiers like Random Forests. In order to have a fair
comparison, we find the optimal parametrization for each
one of the compared algorithms using the same strategy as
before.

For SVM we used a 1-vs-1 scheme for multiclass classifi-
cation and we tried two kinds of kernels (RBF and Linear)
with the parameters C in the range (0.00001, 0.0001, 0.001,
0.01, 0.1, 1.0, 10, 100, 1000, 10000, 100000) and gamma

in the range (0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10, 100,
1000, 10000, 100000). For Random Forests we considered as
hyperparameters the Number of Trees (range: 10, 20, 30, 40,
50, 60, 70, 80, 90, 100) and Maximal Depth (range: 1, 2, 3, 4,
5, 6, 7, 8), which are analogous to the parameters of GBT.

The optimal hyperparameters are then used to train 10
classifiers using a hold-out strategy with randomly sampled
data from the original dataset. The idea is now to find an
estimate of the accuracy of each classifier on the test set
and average the results of the 10 classifiers for the different
samples. All methods were evaluated using accuracy. We per-
form a 1-factor (i.e., choice of method) Analysis of Variance
(ANOVA) for each dataset and report the corresponding p-
values.
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Table 17: Comparison between models in each dataset.

Dataset GBT SVM Random Forests p-value

Slots M1 Accuracy: 83.20% +- 6.27%
(40, 4, 5)

Accuracy: 80.20% +- 5.02%
(RBF, 10, 0.10)

Accuracy: 87.60% +- 6.64%
(80, 5) 0.2746

Slots M2 Accuracy: 72.69% +- 7.19%
(60, 6, 4)

Accuracy: 75.77% +- 4.88%
(RBF, 10, 1.0)

Accuracy: 77.31% +- 9.80%
(30, 8) 0.4308

Geometries M1 Accuracy: 85.29% +- 2.56%
(100, 8, 10)

Accuracy: 82.76% +- 2.47%
(RBF, 1000, 1.0)

Accuracy: 86.44% +- 3.20%
(30, 8) 0.0263

Geometries M2 Accuracy: 83.68% +- 4.98%
(40, 4, 8)

Accuracy: 83.27% +- 4.64%
(RBF, 1000, 1.0)

Accuracy: 86.12% +- 4.26%
(20, 8) 0.3817

The results are shown in Table 17 alongside the optimal
parametrization in each case, for SVM the optimal hyperpa-
rameters are shown in the format given by the tuple (Kernel,
C, gamma), for GBT we have the format (Number of Trees,
Maximal Depth, Minimum Rows), and for Random Forests
we have the format (Number of Trees, Maximal Depth).

The ANOVA reveals that there is no statistically signif-
icant difference for the slots (M1 and M2) and Geometries
M2, while there is a potentially significant difference in the
performance of the methods on Geometries M1. Further
inspection reveals that there’s a difference between RBF SVM
and the other two methods, but there’s no significant differ-
ence between GBT and Random Forests. This suggests that
the results from GBT are competitive with other classifiers in
the state of the art.

5. Discussion

Previous works generate surface roughness predictive models
using several soft computing techniques; however, there are
no standard models to predict surface roughness, the models
being usually generated under specific conditions of machin-
ing, coolant, machine tool, and tool. In the literature, it is
possible to find works in which artificial neural networks or
Bayesian networks are applied to generate predictive models
of surface roughness; also classic decision trees have been
used as a technique for pattern identification in the behavior
of variables that influence surface roughness in the industry
[41], but not many works were found where techniques based
on decision trees are used to predict surface roughness (such
as, for example, Random Forest or Gradient Boosted Trees).

A recently published work is [35] where they use random
forest (RF), multilayer perceptron (MLP), regression trees
(RT), and radial base functions (RBF); this paper presents
a comparative study of the surface roughness prediction
quality; RF is the one that provides the best results in terms of
accuracy, followed by RT and MLP. In our work, we use GBT,
obtaining better results in terms of accuracy than similar
works performed with the same experimental design and
reported, for example, in [4, 23].

In this work, we use real training data and we have
also obtained a graphical representation of knowledge using
classic decision trees to complement the results obtained by
GBT; in this way the joint result provides greater graphic
expressivity regarding conditional influences and the values
of the predictor variables on the class labels than, for example,

Bayesian networks. This is important since it can be easily
used to create a domain representation model and can also be
interpreted to generate rules that contain dynamic knowledge
of the machining process, which facilitates the construction
of knowledge and inference bases for an eventual expert sys-
tem of surface quality prediction in real time under concrete
tool conditions, material to be machined, and machine tool.

All the pieces-of-knowledge derived from this research
and other obtained from previous related works can be used,
for example, to generate inference rules that help to establish
the impact of measures of predictor variables on the surface
roughness class. Figure 3 shows the syntax diagram for if-
statements, based on what was said previously. For example,
if statement 1 shows that the axial depth of cut (ap) has the
highest influence on workpiece roughness, but if the machine
isM-1, then the least important variable is the number of teeth
(flutes), while for M-2 the variable of least importance is the
advance speed (F). The If-Then statement described above
can be generalized for mechanical cutting with machines
that have similar characteristics to M-1 or M-2, and some
characteristics of the cutting process using steel F-114 can now
be tested.

Finally, the ability of Gradient Boosted Trees to determine
the importance of each variable with respect the labels
could be considered similar to the ability of Bayesian net-
works to model influences between these variables and the
labels. This is very important in the domain of micro- and
nanomachining, where precision in themachining influences
heavily the final results. Again, the knowledge gained here
can be combined with previous knowledge that has been
obtained by elicitation from experts or from state of the art,
analysis of results, among others, so that this knowledge can
be represented in a knowledge base and used by a Rule-
based System or Decision Support System. In order to obtain
conclusions about surface roughness as influenced by the
predictive variables or to be able to predict surface roughness
given a dataset or a particular data record.

6. Conclusions

The integration of AI algorithms into computational solu-
tions and techniques for analyzing large amounts of data
are gaining interest in the modern industry. This integration
is part of what some authors call the sixth technological
revolution [27]. In keeping with this idea, this document
provides a model of the surface roughness average (Ra) as a
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if-statement_1: tool

conditions /slots
if machine = M1

if machine = M1

(

(

(

(

)

)

)

)

relevance(ap, 0.30),
relevance(n, 0.23)
relevance(diam, 0.19),
relevance(F, 0.10),
relevance(flutes, 0.05)

else

else

relevance(ap, 0.38),
relevance(diam, 0.31)
relevance(n, 0.14),
relevance(flutes, 0.10)
relevance(F, 0.05)

relevance(HB, 0.45),
relevance(diam, 0.20)
relevance(f, 0.13),
relevance(n, 0.12),
relevance(ae, 0.04)
relevance(ap, 0.02)

relevance(diam, 0.33),
relevance(n, 0.23)
relevance(HB, 0.19),
relevance(ae, 0.18),
relevance(F, 0.05)
relevance(F, 0.05)

if-statement_2: tool&test piece

conditions /geometries

Figure 3: Syntax diagrams for two if-statements related to machining conditions and the relevance of variables for M-1 and M-2.

result of a predictive analysis using Gradient Boosted Trees.
The models presented in this work evaluate the influence of
cutting conditions, the characteristics of two different end-
milling machines, and the material (steel and aluminum test
pieces) on the surface quality of high-speed machining.

Previous works, such as [1, 32], provide mathematical
models to predict surface roughness considering operational
characteristics of HSM; the second group of works provide
surface roughness models using various soft computing and
AI techniques; specifically, they apply ANNs (for example,
[17, 24]), Genetic Algorithms (for example, [1, 25]), or
Bayesian networks (for example, [4, 13, 21]). Generally, these
models consider aspects related to the tool, the machine,
and the material to be machined, and some other works
incorporate other aspects such as the lubricant or coolant (for
example, the works in [15, 49]).

As a soft computing and AI approach, this work falls in
the second group, with the advantage that the resulting model
in each experiment has a high accuracy value in comparison
with other techniques such as decision trees, thanks to the
accuracy of the GBT algorithm. A potential improvement
that could be made to our model is incorporating the
characteristics of the coolant used and study the behavior of
the conditional influences on the surface roughness.

The main contributions of this work are the predictive
model itself and the subsequent analysis of variable impor-
tance. In particular, our results show accuracies ranging from

61.54% to 88.51% on the datasets, which are competitive
results when compared with the other approaches shown in
this paper. An important advantage of applying this model
is that we have been able to analyze which variables have
the most impact on the predictive ability of our model in
a natural way. In this context, we find that the axial cut-
depth is the most influential feature for the slots datasets.
The axial cut deep is the axial contact length between the
cutting tool and the workpiece [44]; this means that when
developing an experimental model for working with steel F-
114, the influence of the cut-depth and the hardness of the
material must be carefully considered. On the other hand, the
hardness and the diameter of the cutting tool are the most
influential features for the geometries datasets. Thus, similar
considerations as before could be held for these variables in
this case.

As a potential future line of work and for practical
applications, the results of this study could form the basis
of a decision support system. In particular, such a system
could use the knowledge contained in the predictive models
as a core knowledge base. In particular, since the predictive
model GBT is based on decision trees, it would be relatively
easy to extract the information from the tree branches as a
knowledge base. These branches could be used as rule sets
for technicians and other users to interpret and understand
the current behavior of the machining systems. Furthermore,
this knowledge base could be enriched with more data as
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it becomes available, although this avenue of work would
eventually lead to concerns of scalability of such a decision
support system.

Finally, as has been said in the discussion, the application
of theGBTalgorithm (derived fromdecision trees) is not very
common in the industry, even though decision trees are one
of themost widely usedmachine learning techniques because
of the ease they provide in generating clear production
rules and being easily understood by end users. This brings
confidence to the predictive models presented here in the
presence of new cases that might be taken as input to predict
surface roughness.
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