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The aim of this paper is to investigate the feasibility of using the Dynamic Time Warping (DTW) method to measure motor states
in advanced Parkinson’s disease (PD). Data were collected from 19 PD patients who experimented leg agility motor tests with
motion sensors on their ankles once before and multiple times after an administration of 150% of their normal daily dose of
medication. Experiments of 22 healthy controls were included. Three movement disorder specialists rated the motor states of
the patients according to Treatment Response Scale (TRS) using recorded videos of the experiments. A DTW-based motor state
distance score (DDS) was constructed using the acceleration and gyroscope signals collected during leg agility motor tests. Mean
DDS showed similar trends to mean TRS scores across the test occasions. Mean DDS was able to differentiate between PD
patients at Off and On motor states. DDS was able to classify the motor state changes with good accuracy (82%). The PD
patients who showed more response to medication were selected using the TRS scale, and the most related DTW-based features
to their TRS scores were investigated. There were individual DTW-based features identified for each patient. In conclusion, the
DTW method can provide information about motor states of advanced PD patients which can be used in the development of
methods for automatic motor scoring of PD.

1. Introduction

Parkinson’s disease (PD) is a chronic progressive disease
characterized by motor and nonmotor symptoms which
affect the quality of life of patients [1, 2]. Motor symptoms
are phenomena such as tremor, rigidity, and bradykinesia.
In the advanced stages of PD, motor states of PD patients
fluctuate between three states: “On,” “Off,” and “On with
dyskinesia.” “Off” state is when insufficient medication effect
causes patients to experience Parkinsonism symptoms, while
during “On” state, relief of symptoms occurs due to enough
medication effect. “On with dyskinesia” is a state where
patients experience involuntary movements due to excessive
amount of medication. Dyskinesia can occur in response to
both increasing and also decreasing concentrations followed
by a sudden “Off” state [3–5].

Treatment of PD is guided by clinical examination using
rating scales. The most common one is the unified PD rating

scale (UPDRS) [6]. UPDRS section III is used for clinical
scoring of the motor symptoms. Another scale used for asses-
sing the motor states in PD is the Treatment Response Scale
(TRS) [7]. However, the rating scales are subject to intra- and
interobserver variabilities; they are not able to capture varia-
tions in symptoms continuously. Patients require physical
visits to the clinic for their motor symptoms to be rated.
The clinical ratings are done infrequently, not including
events at home, thus do not provide a full picture of the
patients’ condition. This is problematic given that their motor
states can fluctuate from time to time during the day [8].

The development of methods for continuous and
automatic PD motor state assessment has been done in vari-
ous studies [9–11]. Different data- and knowledge-driven
methods have been used to extract information for the devel-
opment of such tools. Clinical assessment of PD symptoms is
done visually by clinical experts observing the speed, rhythm,
and extent of the movements according to rating scales. PD
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symptoms can manifest in various directions and degrees
depending on patients’ motor states. In other words, when
PD patients are Off, On, or dyskinetic, they may experiment
the similar tasks but at different amplitudes and frequencies.
Therefore, the recorded signals of a repeated task experimen-
ted at different motor states can be dissimilar and they can
vary in length and frequency. This can be reflected when
measuring the similarity of the signals recorded from similar
tasks but experimented at different motor states. An
approach to measuring the similarity of the signals with dif-
ferent lengths and frequencies is the Dynamic TimeWarping
(DTW) method.

DTW was first introduced in the 1960s and initially
became popular in the context of speech recognition [12]
and time series data mining. It is a technique used to find
the optimal alignment between two time-dependent series
[13]. With applications in finance, DTW was used to find
similar historical subsequences and predictions were made
from the mapping of the most similar subsequences [14].

Previous studies [15–18] employed the DTW method to
segment the signals, part of which matched well with a prede-
fined reference pattern. Ghassemi et al. [15] employed two
variations of this method in different experiments of PD
patients walking for gait segmentation. The experiment
included a straight walk, a heterogeneous assessment para-
digm, and walking including turns were examined with the
method. They achieved high accuracy using this method for
segmenting all types of gait sequences. Barth et al. [16] seg-
mented gait signals from daily life activities into single steps
for further computation of step parameters. They used gyro-
scopes attached to sports shoes and used the DTWmethod to
recognize the beginning and end of steps during the walking
activity. They achieved a 97% recognition rate of steps. Barth
[17] developed a mobile system to rate gait impairment. The
authors used a multidimensional subsequence DTWmethod
to extract single strides from gait tests and free walking. They
used a predefined stride template to find a matching pattern
in PD patients’ walking signals. They achieved excellent rec-
ognition rates for both experiments.

DTW was also used for matching voice samples in PD.
Vikas Sharma [18] used DTW to distinguish PD patients
from healthy controls and achieved a high DTW-based
matching percentage of 80% for PD patients vs. 72% for
healthy controls. In addition, Adame et al. [19] used the
DTWmethod in timed up and go (TUG) test for distinguish-
ing between healthy controls, early PD, and advanced PD
patients. They attached a wearable inertial sensor unit to
the lower back of PD patients and healthy controls and

instructed them to experiment with the TUG test. Results
from using this method showed that the state transitions of
sit to stand and turning for healthy controls and early PD
patients vs. advanced PD patients were significantly different.
With assessment of PD symptoms, a study is aimed at pro-
posing a method based on DTW for monitoring the changes
in gait trajectories. They used motion sensors to record hip
and knee inclination (pitch) of four PD patients and six
healthy controls during walking. They compared the average
distances between healthy subject and PD patients and also
the distance between the experiments PD patients had before
and after medication. It was discovered that this method can
be used for discriminating a healthy gait from an impaired
one. In addition, it was found that this method is useful for
monitoring the changes in gait pattern of PD patients before
and after medication. However, the number of subjects was
few, the significance of the scores from results was not inves-
tigated, and the raw signals of the walking experiments were
not used in DTW.

In spite of that, since there is a high risk of falling during
walking in older PD patients, this study focuses on using leg
agility test as a better choice for evaluation of the motor
symptoms. Previous researches have shown leg agility con-
tains important information about disease severity [20, 21].
To measure the motor states of the PD patients in a previous
study [10], the authors have used different techniques for
extracting 24 features to be included in developing the
methods for assessment of PD motor states. However, the
DTW method was not included as part of the features since
the feasibility of using this method for measuring the motor
states was unclear. Besides, to our knowledge, DTW has not
been examined for its usefulness for measuring the motor
states in PD using the raw signals of the experiments. This
method provides a measure of similarity of the signals
regardless of their length and frequency. Feasibility of using
this method for measuring the motor states can provide
information to be used for the development of methods for
automatic motor scoring of PD.

This study is aimed at investigating the feasibility and the
extent of using a distance measure calculated by the DTW
method to assess the motor states of advanced PD patients
over a course of UPDRS-based leg agility motor tests. An out-
line of the proposed approach is shown in Figure 1.

For this purpose, extracting information from DTW-
based distances between 3D motion sensor signals of experi-
ments recorded at different motor states, a DTW-based
motor state distance score (denoted as DDS) was developed
and its properties was examined. To investigate whether
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Figure 1: Outline of the study showing where DTW method is used to measure the distances between leg agility signals.
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DDS can detect the motor states similar to how it was
assessed by TRS, the mean of DDS vs. the mean of TRS scores
across the tests was examined. The trend of DDS for healthy
subjects was included. Further, the power of the method in
quantifying the motor states was investigated for the most
responsive PD patients to medication. Patients were selected
through their TRS scores, and the most informative DTW-
based measures/features about their motor states were iden-
tified and evaluated. To find out whether DDS is significantly
different between groups of PD patients at different motor
states as scored by TRS, the mean DDS across groups of
patients and healthy subjects was investigated. The feasibility
of using the developed DTW-based scores for classifying the
motor state changes was investigated.

2. Materials and Methods

2.1. Participants. In this study, 19 advanced PD patients
experiencing motor fluctuations were recruited to an
observational study where they were given a single dose of
medicine in a hospital in Uppsala, Sweden [22]. 22 healthy
controls experimented the same tests for up to 8 times. The
study was carried out in one center and was approved by the
regional ethical review board in Uppsala, Sweden (reference
number: 2015/100). The patient characteristics are shown in
Table 1.

2.2. Experimental Setup. Subjects put on their ankles a 3-axial
accelerometer and gyroscopes with a sampling rate of
102.4Hz, accelerometer range of +/-16 g, and gyroscope
range of +/-2000 dps. They experimented the leg agility test
by sitting on a straight back chair, placing both feet on the
floor, and tapping one foot at a time (first right foot and then
left foot) for 10 times and as fast as possible. The test is
defined in item 26 of UPDRS III where the agility of the foot
tapping of PD patients is evaluated for assessment of the
severity of the motor states. The sensor data of all time points
(X, Y , and Z axes of accelerometers and gyroscopes) were
collected and saved. The foot tapping signals were segmented
by identifying the movements in the acceleration data in
the Y-axis. The details of measuring the experiments by
motion sensors, data preprocessing, and segmentation
were described in a previous study [10]. The extracted seg-
ments consisting of 3D accelerometer and gyroscope data
were used to calculate the features as described in the
next section.

For PD patients, the leg agility motor tests were experi-
mented at different time intervals for up to 15 trials. The first
experiment was within 50min before taking the dose. The
second experiment was right after administration of 150%
of their normal daily dose (0min). Administration of the
levodopa dose was to follow the individual response of the
patients to the dose. It was to explore motor state change
from Off (within -50min) to good mobility and/or dyskinetic
state (expected within 20-60min) and back to Off state. Writ-
ten informed consent was given. The next tests were approx-
imately at 20, 40, 60, 80, 110, 140, 170, 200, 230, 260, 290,
320, and 350min after the dose administration. Healthy
controls experimented the test up to 8 times.

The experiments were video recorded. The segmented
data were synchronized with the videos. The videos were
shown in a randomized order to three movement disorder
specialists for rating the experiments of the patients regard-
less of the time points the medications were taken. The
clinical experts rated the overall mobility of patients, using
the Treatment Response Scale (TRS) [7] ranging from -3
(very “Off,” severe Parkinsonism) to 0 (On, normal mobility)
to 3 (severe dyskinesia, severe choreatic dyskinesia). They
rated severity of dyskinesia on a scale of 0 (no dyskinesia)
to 4 (severe dyskinesia) [6], and some items of UPDRS sec-
tion III including UPDRS #27 (Arising from chair), UPDRS
#29 (gait), and UPDRS #31 (body bradykinesia) each of them
rated on a scale from 0 (normal) to 4 (severely impaired).

In addition to leg agility tests, experiment of the PD
patients included walking and hand rotation. During the
walking experiment, subjects performed a 2.5-meter walk.
During the hand rotation experiment, subjects performed
alternate pronating hands for 20 seconds. The application
of DTW was done on walking and hand rotation data when
the first test was set as a baseline signal for measuring the dis-
tances of all other tests to it and also when the distances of
every consecutive test signals were measured. The best results
were achieved when using the second approach on leg agility
test data.

2.3. Extraction of Distance Measures by DTW. The different
signals extracted from the foot tapping tests for PD subjects
were displaced in time, and they had different lengths and
frequencies. Calculating the Euclidian distance between each
two data points from the two time series is not an ideal
approach for finding the distance between two signals since
it is not providing invariance to warping for time series that
differ in length. Instead, in order to measure the distance
between these two consecutive test time series, the DTW
was used to dynamically adjust themetric in order to find bet-
ter alignment between them [23]. The details of the DTW can
be found in the study by Keogh and Ratanamahatana [24].
This algorithm can be described in two steps. First, it finds
the distance between the two time series of (Xi) (1 ≤ i ≤ n)
and (Y j) (1 ≤ j ≤m) resulting in amatrixDij with a dimension
of n ×m, containing distances between Xi and Y j. The dis-
tances within the matrix were then calculated by the sum of
the distances between the two elements comprising the series
of Xi and Y j. Finally, the minimum of the neighbouring
elements in matrix Dij was calculated as [24]

Dij = Xi − Y j

�� �� +min Di−1,j,Di−1,j−1,Di,j−1
� �

: ð1Þ

Figure 2 is an example that illustrates the acceleration
signal collected from the Y-axis during experimenting
one-foot tap during the first interval (test 1, premedication,
blue) together with that experimented at the second inter-
val (test 2, at the time of medication, red). Figure 2(b)
shows the original signals while Figure 2(c) shows that
the two time series are warped. In Figure 2(d), the distance
matrix containing the distances and the optimal path is
shown. The figure illustrates only one tap trial for clarity.

3Journal of Sensors



T
a
bl
e
1:
C
ha
ra
ct
er
is
ti
cs

of
pa
rt
ic
ip
an
ts
sh
ow

n
as

m
ea
n
(s
ta
nd

ar
d
de
vi
at
io
n)
,l
ev
od

op
a-
ca
rb
id
op

a
st
ud

y
do

se
as

m
in
-m

ax
.

G
en
de
r

A
ge

(y
ea
rs
)

H
ei
gh
t

(m
)

W
ei
gh
t

(k
g)

Y
ea
rs
w
it
h

P
D

Y
ea
rs
on

le
vo
do

pa
Sy
m
pt
om

du
ra
ti
on

(y
ea
r)

Le
vo
do

pa
-c
ar
bi
do

pa
st
ud

y
do

se
(m

g)
A
ff
ec
te
d

si
de

H
oe
hn

&
Y
ah
r

U
P
D
R
S
IV

P
at
ie
nt
s

14
m
al
es
,

5
fe
m
al
es

71
.4
(6
.3
)

1.
75

(0
.0
9)

75
.4
(1
1)

9.
7
(6
.8
)

9.
5
(6
.5
)

12
.2
(7
.3
)

11
0-
41
0

9
ri
gh
t,

10
le
ft

3.
1
(0
.8
)

6.
21

(3
.1
3)

H
ea
lth

y
co
nt
ro
ls

16
m
al
es
,

6
fe
m
al
es

64
.2
(7
.4
)

1.
75

(0
.1
)

83
.6
(1
3.
8)

—
—

—
—

4 Journal of Sensors



(a)

20 40 60 80 100
Samples

–50

0

50

100

150

200

250

Ac
ce

le
ra

tio
n 

in
 Y

-a
xi

s (
m

/s
2 )

Original signals

Test 1
Test 2

(b)

20 40 60 80 100 120
Samples

–50

0

50

100

150

200

250

Ac
ce

le
ra

tio
n 

in
 Y

-a
xi

s (
m

/s
2 )

Warped signals

Test 1
Test 2

(c)

10    

D
ist

an
ce

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100
Amp

100

90

80

70

60

50

40

30

20

10

0

Te
st 

1

Accumulated distance matrix and optimal path

10 20 30 40 50 60 70 80
Test 2

0
100
200

A
m

p

(d)

Figure 2: (a) Leg agility performance along Y-axis. (b) Original signals captured by sensors for a single foot tapping. Prior test is blue line and
later test is red line. (c) The signals are warped. (d) Accumulated distance matrix and optimal path.
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Distance measures were calculated for full experiment of
foot tapping.

2.4. Creating the Dataset. There were six signals recorded by
motion sensors from the original foot tapping test each time
this test was conducted. These signals are Xacc, Yacc, and Zacc
to represent the acceleration of the foot tapping in the X, Y ,
and Z axes andXgyr,Ygyr, and Zgyr to represent the gyroscopic
rotation of the leg around the X, Y , and Z axes according to
the right-hand rule, respectively. In addition to those signals,
the magnitude of acceleration (Macc) in m/s2 and the magni-
tude of orientation (Mgyr) in

°/s were calculated using

Macc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
acc + Y2

acc + Z2
acc

q
, ð2Þ

Mgyr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
gyr + Y2

gyr + Z2
gyr

q
: ð3Þ

The distance measures were calculated between every
two consecutive tests using the mentioned eight variables.
Figure 3 presents the approach for preparing the dataset.

Let XDTWðti ,ti+1Þ, YDTWðti ,ti+1Þ, and ZDTWðti ,ti+1Þ be the DTW
calculated for two signals of the same axis from two consec-
utive tests, then the following is valid for the acceleration as
well as the gyroscope signals.

XDTW ti ,ti+1ð Þ = DTW Xti
, Xti+1

� �
, ð4Þ

YDTW ti ,ti+1ð Þ = DTW Yti
, Yti+1

� �
, ð5Þ

ZDTW ti ,ti+1ð Þ = DTW Zti
, Zti+1

� �
: ð6Þ

Equations (4), (5), and (6) are calculated for the acceler-
ation values as well as when they are calculated for the gyro-
scopic X, Y , and Z values. Calculating the distances using
individual axis signals and the magnitudes of acceleration
and orientations was done to capture all deteriorations and
differences in individual directions as well as in their overall
weight. By using these signals, 16 features were calculated.

Two more features were added after calculating the mean
of the magnitude of the acceleration and the gyroscope dis-
tance measures of the right and left foot. This was to examine
if the distance between the mean of the acceleration and
mean of the gyroscope signals from both feet can provide
motor state information.

Since the leg movements during the foot tapping experi-
ment were along the Y-axis and during different motor
states, the acceleration of the foot tapping can differ in this
direction; the mean of the distance measure in the Y-axis
was calculated for right and left foot resulting in the last fea-
ture. Possible differences in directions of Y and Z are investi-
gated for each foot separately. In the end, there were a total of
19 features.

An example of the dataset including the measures for one
patient is presented in Table 2.

Referring to Table 2, the first row on top represents the
two consecutive tests that the distance measure was calcu-
lated for. The values in each cell represent the distance mea-
sure calculated for those two respective tests and using the
signals that are presented at the headers of each row. The sig-
nals are mainly in two groups. Eight signals for the right (R)
and eight for the left foot (L). Also, the signals from each foot
are in two groups of acceleration signals and orientation sig-
nals. Acc stands for acceleration and Gyr stands for gyro-
scope data. Both contain the signals at individual axes and
their magnitudes (M). Three rows in Table 2 at the bottom
represent the features for mean right and left foot accelera-
tion in the Y-axis (Mean_RL_Acc_Y), the mean right and left
foot magnitude acceleration (Mean_RL_Macc), and the mean
right and left foot magnitude orientation (Mean_RL_Mgyr),
respectively. The total number of observations were 229
and 153 for patients and healthy subjects, respectively.

2.5. Statistical Analysis. The 19 calculated features were used
to extract a motor state distance score (DDS). To identify
which distance measures reflect more information about
motor states as scored by TRS, a stepwise feature selection
method with the fast-forward approach was first used where
TRS was set as the response. Selection of the stepwise method
was based on the recommendation of a previous study which
identified it as a good choice for selecting the features and
improving the performance of analytic methods [25]. Since
there was a high agreement between the three clinical raters
on the TRS scale (ICC = 0:82) as assessed in the previous
study [10], this scale was used as the response to the selection
method. This method was applied to a dataset containing all
patients. To extract a score containing the most variability
from all features, principal component analysis (PCA) was
then applied to the selected features. PCA is a method to
reduce the dimension of the feature space by identifying the

Signals of Xcc, Yacc, Zacc, Macc, Xgyr, Ygyr, Zgyr, Mgyr recorded
from patients subject at different occasions t1, t2, …, t15

Signals at t1
(pre-medication)

DTW(t1,t2) DTW(t2,t3)

Signals at t2
(medication)

Signals at t3 
(post-medication)

Signals at t15 
(post-medication)

…

… DTW(ti,ti+1)

Figure 3: Illustration of calculating the distance measures and preparing the dataset.
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most and least important variables [26]. For this, a matrix
summarizing the relation between variables is built. Then,
the matrix is divided to two separate components: direction
and magnitude. Eigenvalues as a measure of covariance in
data are the coefficients attached to eigenvectors providing
the axis magnitude. Ranking the eigenvectors in order of
their eigenvalues, highest to lowest, the order of the signifi-
cant principal components is achieved. Two principal com-
ponent (PC) scores with eigenvalues higher than 1 and
containing 0.53% of the total variation were retained. The
scores of the first PC in the vector were ranked and then
rescaled to the range of the TRS scale (-3 to +2) per patient
in the dataset resulting in DDS. Mean DDS between each test
occasion ðtime pointsÞ ± 0:95 confidence intervals of the
mean for each test occasion was investigated. This was to
investigate the trend of mean DDS in capturing the motor
states over the course of the test occasions vs. the trend of
mean TRS scores. For healthy controls, the features were
extracted. Since stepwise cannot be applied on a group with
one value as target, the first principal component was used
for the analysis.

Further, the extent that the individual DTW-based fea-
tures matched the TRS scores of individual patients was
investigated. For this, seven patients who showed a response
to medication (from Off to On and back to Off) were
selected. To identify the most related DTW-based feature to
each patient, their features were used as input to stepwise
selection method where their TRS scores were set as
response. Moreover, the correlation coefficient of the identi-
fied most important DTW-based feature to their TRS score
was examined.

The power of the DDS for separating the different motor
states as scores by TRS was investigated using ANOVA. For
this, the mean DDS between the groups of PD patients at
different motor states was assessed.

To assess the differences in DDS results between right
and left legs of the PD patients mostly affected on the right
or left side, t-tests were performed on the first PCs of the
selected features for each individual leg.

Using DTW, the distance between two consecutive
signals that were recorded at different motor states was calcu-
lated. Therefore, the power of DDS in identifying the changes
between the motor states of the patients as scored by TRS was
examined. The amount of increase/decrease in TRS scores
from one test to the next is calculated per patient. For this,
the primary TRS score is subtracted from the secondary
TRS score, e.g., if the first test TRS score was +1 and the next
test score was +2, then the amount of change is calculated
as +2 − ð+1Þ = −1. Corresponding all DDSs with the calcu-
lated measures of changes in TRS, there were 211 observa-
tions left since the TRS difference could not be measured
for the last test. Moreover, there were 12 missing values
which were excluded, resulting in 199 observations in the
dataset. Several classifiers were examined, and this study pro-
poses the two best performing ones:

(i) Support Vector Machines (SVM) performing the
classification by finding the hyperplane that maxi-
mizes the margin between the classes [27]. SVM use

a kernel trick technique to transform the data to find
the optimal boundary between the possible outputs.
In this case, a common kernel function, the radial
basis function kernel, was used with a gamma value
of 0.0 and an epsilon value of 0.001

(ii) Decision Tree (DT) is an intuitive model making
decisions based on the sequence of evaluations made
to the feature values [28]. It makes the model in a tree
structure by breaking the data into smaller subsec-
tions where leaf nodes represent the decision or
classification. In this case, the number of training
examples (batch size) was set as 100, where the min-
imum total weight of the instances in a leaf was set as
2 and no restriction was set for the depth of the tree
10-fold crossvalidation was used for both classifiers
where the whole data set was divided into 10 sets; 9
sets were invoked for training and 1 set for testing,
iterated for 100 times. The classification accuracy,
precision, recall, and F-score are reported.

3. Results

3.1. Selected DTW-Based Features for All Patients. Out of the
19 calculated features, using the stepwise method, five fea-
tures were found to be the ones most related to the TRS scale,
containing the most amount of information related to the
motor states. Three of the features were the distance mea-
sures calculated using the right foot acceleration data in the
X-axis (feature 1), the Y-axis (feature 2), and using left foot
acceleration data in the Z-axis (feature 3). Two additional
features were the distance measures calculated using left foot
gyroscope data in the X-axis (feature 4) and the magnitude of
left foot gyroscope data (feature 5). The selected features
show that the calculated distances from all single axes and
from both acceleration and gyroscope measures were rele-
vant to the motor states.

3.2. Evaluation of DDS

3.2.1. DDS Over the Course of Test Occasions. To investigate
the extent that mean DDSs agree with the TRS scores for all
PD patients, the mean DDS and the mean TRS scores across
all test occasions are calculated and illustrated in Figure 4. In
this figure, since DDS was calculated between every two con-
secutive tests, the mean DDS is visualized between the tests.
The last test is excluded since during that test there was not
enough data for the analysis. The large numbers in the
X-axis are the time points when the tests were experimented
starting from the first (baseline) test occasion, which was
around 50 minutes before dose administration, denoted
by -50. The follow-up test occasions were 0 minutes, the time
when the dose was administered, and follow-up occasions till
320 minutes after that. The number of tests (n) was as
follows: -50 (19), 0 (19), 20 (19), 40 (19), 60 (19), 80 (19),
110 (19), 140 (19), 200 (19), 230 (18), 260 (15), 290 (13),
320 (11), and 350 (1). The small numbers in the X-axis refer
to the middle of the experiment time points where the mean
DDS fits.
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When depicting the mean DDS vs. mean TRS across the
time points, there was an error of ±1 between DDS and TRS
throughout the first to the last intervals. The overall trend of
the DDS for PD patients was similar to the trend of TRS indi-
cating DDS provides information related to motor states of
PD patients. This can be specifically seen in Figure 4 between
the tests -25/-50 and 140/155. In contrast to mean DDS of the
PD patients and mean TRS, the mean DDS for healthy con-
trols showed a different trend.

3.3. DTW-Based Measure for Selected Patients. Table 3 illus-
trates the selected patients, DTW-based features, correlation
of the selected features to their TRS scores, and significance
of the correlations (P value). Most of the features were from
a single axis and a single foot, except two of them (magnitude
of gyroscope from right foot; mean of the acceleration in the
Y-axis from the right and left feet). Features showed medium
to high correlations (0.55 to 0.83) with the respective TRS
scores, and all were significant except two (P values = 0.12
and 0.07). The highest correlation was 0.83 where the
selected feature was the magnitude of the orientation
extracted from the right foot. It can also be seen in Table 3
that for these patients the left foot is selected more often than

the right foot. However, the total number of patients was not
enough to draw an inference. In addition, as it was investi-
gated in a previous study, PD asymmetry did not have an
effect on the performance of the leg agility tests [10].

When investigating the most relevant DTW-based fea-
tures for the most responsive PD patients according to TRS,
there were different features identified.

The overlay of the scores from the selected DTW-based
features (blue lines) and TRS scores (red lines) across the test
occasions for the seven patients is depicted in Figure 5.

As depicted in Figure 5, the DTW-based features agree
with the respective TRS scores of the responsive patients.
According to this figure and the correlation presented in
Table 3, the best match is shown for patient ID 7 (R = 0:83).
The weakest correlation was between the DTW-based feature
and TRS scores of patient ID 13 (R = 0:55). Despite the low
correlation, the DTW-based and TRS scores for this patient
had a similar trend. On the other hand, patient ID 33 had a
good correlation (R = 0:65), but it was not significant since
in clinical experts’ rating theTRS responsewas notmanifested
right after themedication administration at test 2, whereas the
DTW-based feature shows there was some response at earlier
intervals (test 3). This feature (Acc_Z-axis) might have cap-
tured the motor state change in micromovements along the
Z-axis that was not visible to clinical experts’ eyes. For patient
ID 41 and ID 15, even though mean TRS responses were not
large, the DTW-based scoresmatched well with the respective
TRS scores. Extraction of DTW-based features using acceler-
ation or gyroscope signals from individual axes showed prom-
ise for measuring the motor states in PD. The results indicate
that this method is able to provide motor state information at
an individual level. However, the number of responsive PD
patients in this study was limited and DDS needs to be calcu-
lated for a larger number of such cases.

3.4. Analysis of DDS for Asymmetric PD Patients. All PD
patients had asymmetrical motor symptoms; nine PD
patients were affected mostly on the right side and 10 PD
patients on the left. In the two groups of PD patients, the first
PC between right and left legs was not significantly different.
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Figure 4: Mean DDS for PD patients (dashed, blue line) vs. mean DDS for healthy controls (dashed, black line) vs. mean TRS scores (straight,
red line) across the time points ± 0:95 confidence intervals of the mean for each test occasion. None of the mean DDS for patients, mean DDS
for healthy controls, and mean TRS scores was significantly different from each other.

Table 3: Selected DTW-based features for the most responsive
patients together with their correlations and P values. In this table,
acceleration data is abbreviated as Acc, gyroscope data as Gyr,
right foot as R, and left foot as L. X, Y , and Z are the axes from
which the measurements were recorded.

Patient ID Feature Correlation P value

7 R_Magnitude_Gyroscope 0.83 ≤0.001
13 L_Acceleration_Y-axis 0.55 0.07

15 R_Gyroscope_X-axis 0.75 0.01

33 L_Acceleration_Z-axis 0.65 0.12

39 L_Gyroscope_X-axis 0.63 0.05

40 Mean_RL_Acceleration_Y-axis 0.62 0.02

41 L_Gyroscope_X-axis 0.63 0.02
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P value was 1 for both groups of right and left affected PD
patients. This indicates asymmetry of PD did not reflect on
performing the leg agility tests nor was it detected by DDS,
as measured by the first PC.

3.5. Mean DDS vs. TRS Groups and Healthy Controls. The
power of DDS to differentiate between groups of PD patients
at different motor states was assessed. Figure 6 shows the
result of assessing the differences in mean DDS between tests
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experimented by patients at different motor states. The mean
of the DDS value from left to right for each group was -0.91,
-0.54, -0.32, -0.03, 0.02, 0.69, and 0.78. The mean DDS was
significantly different between the patients with TRS score
of 1 (mild dyskinesia) and the patients with TRS scores of
0, -1, -2, and -3 with respective P values of 0.02, P ≤ 0:001,
P ≤ 0:001, and 0.02. Moreover, the mean DDSs were signifi-
cantly different between groups of patients with a TRS score
of 2 and -2 (P value = 0.02). This indicates that DDS can sep-
arate the PD patients at “Off” state from the ones at “On”
state. In addition, as depicted in Figure 5, the mean DDS
for healthy controls (0.02) is similar to the mean DDS for
group of patients with a TRS score of 0 (-0.03). This indicates
the ability of this method in identifying the On/normal
mobility as it was shown by healthy subjects, experienced
by patients at On state and scored by clinicians.

3.6. Classification of Motor State Changes. DDS was able to
classify the motor state change as scored by TRS with an
accuracy of 82% and 74% using the SVM and DT algorithms,
respectively. The details of the classification results such as
precision, recall, and F-score are presented in Table 4. The
classification power of DDS was further examined for the
calculated changes in other UPDRS III items.

The results indicate that DDS is able to classify the motor
state changes as assessed by TRS and UPDRS III items.

4. Discussion

In this study, four main analyses were done to investigate the
feasibility and the extent the DTW method is able to provide
information about motor states in advanced PD. (i) The
trend of DDS was examined against the TRS scores over
the course of the test occasions from before medication up
to 15 times after the medication; (ii) individual DTW-based
features matching the TRS scores of the individual PD
patients were identified; (iii) the mean DDS was compared
between groups of PD patients with different motor states
as they were scored by clinical experts, including the healthy
subjects; (iv) the classification power of the DDS in detecting
the changes in motor states was examined.

The novelty of the approach proposed in this study was
that we calculated the distances between every two consecu-
tive tests experimented at Off, On/dyskinetic, and wearing
offmotor states by applying the DTWmethod on raw signals
of leg agility experiments from PD patients. The relative dis-
tance measures from the first test provided information
about how the motor states of the patients changed over time.

2

1

0

–1

–2
–3 –2 –1 0 H 1 2

Mean TRS

M
ea

n 
D

D
S

Mean DDS vs TRS groups and healthy subjects

Figure 6: Comparison of means for DDS across groups of patients at different motor states scored by clinical TRS. In the Y-axis, the negative
values mean Off state and the positive values mean On state.H is the group of healthy subjects. Number of observations (n): -3 (5), -2 (47), -1
(57), 0 (38), H (153), 1 (62), 2 (8), and 3 (0). The DDSs were significantly different between 1 and -3 (P = 0:02), 1 and -2 (P ≤ 0:001), 1 and -1
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Table 4: Classification accuracy, precision, recall, and F-score results for other rating scales.

Rating scale items SVM Decision Trees
Accuracy Precision Recall F-score Accuracy Precision Recall F-score

TRS 82% 0.67 0.82 0.74 74% 0.54 0.73 0.62

Dyskinesia 87% 0.75 0.87 0.80 86% 0.75 0.86 0.80

Bradykinesia (#31) 88% 0.77 0.88 0.82 87% 0.77 0.87 0.82

Gait (#29) 88% 0.77 0.88 0.82 87% 0.77 0.88 0.82

Arising from chair (#27) 91% 0.83 0.91 0.86 91% 0.83 0.91 0.86

Leg agility (#26) 83% 0.68 0.82 0.75 82% 0.68 0.82 0.75
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The trends of the DDS for PD patients and the TRS scores
over the test occasions were matching well up to the sixth test
after taking the medication, whereas the mean DDS of the
healthy subjects differentiated them by a symmetrically
different trend. When investigating the best match among
the 19 individual DTW-based features calculated for each
patient, we found that for the patients who showed a
response to TRS, there is a feature that matches well with
their TRS scores. The dissimilarity of the features can refer
to the multidimensionality of the PD where symptoms man-
ifest at different limbs, different extents, and directions. This
also indicates that PD patients require personalized motor
state assessment that needs to be done by using machine
learning algorithms when a full set of data-driven and
knowledge-driven measures are provided to them. Investi-
gating DTW further for detecting the changes in motor states
as scored by TRS provided good accuracy. The results from
analysis of PD asymmetry showed that it did not affect the
leg agility performance as it was measured by DTW. This
result is in line with our previous study where in the two
groups of PD patients the first PC was not significantly differ-
ent between each leg. The differences in TRS scoring of the
patients in this study were not large. The mean DDS differen-
tiated the patients at On/dyskinesia and the patients at Off
states well (Figure 6). However, the number of patients dur-
ing the states with larger TRS scores of two and three was
not enough. In addition, the mean DDS for healthy controls
matched well with the mean DDS of the PD patients at TRS
score of zero, indicating the power of this method in match-
ing the normal mobility of PD patients and healthy controls.
The classification power of DTW in detecting the changes in
motor states was good. However, not all PD patients in this
study showed response to medication; hence, the state
changes were not large as well. This should be examined
including many responsive PD patients according to their
TRS scores.

The results from application of DTW on walking and
hand rotation signals were not as promising as the ones
reported in this paper for leg agility. This might be because
application of DTW on lengthy signals may not optimally
reflect the distances providing information about motor
states. To extract motor state information in this study, the
distances between every consecutive signals were calculated.
An alternative approach was setting the first test as baseline
test when the PD patients were assumed to be at Off states
and calculating the distances between every other test against
the baseline. However, examination of this approach was not
promising. Investigating the rationale behind it, we observed
that TRS score for the first tests of the PD patients was not
small enough for the DTW method in order to capture the
differences between this test and the latter tests. The appeal-
ing aspect of the DTW method in this study was that the
analysis of data-driven distance measures extracted from
consecutive tests, regardless of their length and frequency,
could provide information about an important state in PD,
namely, the motor states. The results of this study are in line
with what was recommended by Shokoohi et al. [29]. They
investigated two approaches to compute the multidimen-
sional DTW score. In an approach named “dependent,” the

distance between each corresponding pair of time series
(between X, Y , and Z axes) was calculated, whereas in the
“independent” approach, the score was computed for each
dimension (X/Y/Z axes) independently across the tests. It
was recommended that with the case of right and left upper/-
lower limb experiment, the choice of independent DTW
score calculation would provide more accurate results for
classification.

The previous study [10] provided high convergence
validity (0.81) for automatic scoring of the motor states using
machine learning algorithms. 24 features were extracted
using various statistical methods, and ten features were
selected as the most related ones to TRS. One of the selected
features was approximate entropy of magnitude orientation
that was calculated using a method that took the timing var-
iability of the signals into account [30]. It could be of interest
to investigate the importance of a calculated DTW-based fea-
ture along with those features in relation to TRS and to inves-
tigate whether the inclusion of this feature adds up to the
convergent validity of the machine learning methods.

A limitation of this work was that extracting the distance
measures requires accurately presegmented signals. This is
because for calculating the distance measures using the
DTW method the endpoints of the two signals must not be
largely variable. This can affect the calculated measure to a
large extent as it is discussed in the work of Shokoohi et al.
[29], and we experimented it with walking and hand rotation
data. In this study, the segmentation was done visually by
cutting the signal from maximum two seconds before the
start and after the end of the tasks. The agreement between
the raters was 0.82 indicating that the specialist did not fully
agree on scoring the motor states of the PD patients. Two cli-
nicians rated more towards the Off state than dyskinesia
which perhaps was the reason for having the range of the
mean TRS scores over time towards the Off state.

For future studies, examining this method for differenti-
ating between PD patients at different motor states requires
a larger number of PD patients with a complete range of
motor state ratings of -3 to +3. Moreover, investigating the
method for the most responsive patients and identifying the
reasons for the appearance of the individual DTW-based fea-
tures for them require using a larger number of responsive
PD patients to be examined using this method. Expanding
this method to be used with a larger dataset might prove that
it is enough to use data from only one foot to quantify the
motor states. Additional sensor data such as pressure mea-
surements could be used to further improve the method. This
has also been proposed in a study by Steinmetzer et al. [31].
An alternative approach to DTW can be Hidden Markov
Model (HMM) for assessing the quality of the movements
as presented by Rybarczyk et al. [32]. They assessed the qual-
ity of the movements using DTW and HMM on measured
body joint angles.

5. Conclusion

Using the DTW method, the calculated distance measures
were able to assess the motor states similarly to visual evalu-
ation by clinical experts using TRS. The identified DTW-
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based individual features matched well with the motor states
of the responsive patients. The results from evaluating the
DTW-based scores at different motor states showed that
this method can differentiate the patients at On state from
the ones at Off states. DTW-based scores also showed high
classification power when classifying the motor state changes
in TRS, as well as the changes in the scoring of the other
rating scales.

In conclusion, the results from this study showed it is fea-
sible to use the DTW method for extracting information
about PD motor states. The information provided by using
DTW method can be included in the development of the
methods for automatic scoring of advanced PD motor states.
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Figure 1: comparison of means for DDS extracted from hand
rotation data across groups of patients at different motor
states scored by clinical TRS. In the Y-axis, the negative
values mean Off state and the positive values mean On state.
H is the group of healthy subjects. DDS was not significantly
different between the groups. Figure 2: comparison of means
for DDS extracted from walking data across groups of
patients at different motor states scored by clinical TRS. In
the Y-axis, the negative values mean Off state and the posi-
tive values mean On state. H is the group of healthy subjects.
DDS was not significantly different between the groups.
Figure 3: DDS scores were calculated between signals of each

test vs. first test (baseline) using the leg agility data. Mean
DDS for PD patients (dashed, blue line) vs. mean TRS scores
(straight, red line) across the time points ± 0:95 confidence
intervals of the mean for each test occasion. None of the
mean DDS for patients, mean DDS for healthy controls,
and mean TRS scores was significantly different from each
other. Mean DDS did not show a similar trend to mean
TRS scores. (Supplementary Materials)
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