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ABSTRACT
Narrative sensemaking is an essential part of understanding se-
quential data. Narrative maps are a visual representation model
that can assist analysts to understand narratives. In this work, we
present a semantic interaction (SI) framework for narrative maps
that can support analysts through their sensemaking process. In
contrast to traditional SI systems which rely on dimensionality
reduction and work on a projection space, our approach has an ad-
ditional abstraction layer—the structure space—that builds upon the
projection space and encodes the narrative in a discrete structure.
This extra layer introduces additional challenges that must be ad-
dressed when integrating SI with the narrative extraction pipeline.
We address these challenges by presenting the general concept of
Mixed Multi-Model Semantic Interaction (3MSI)—an SI pipeline,
where the highest-level model corresponds to an abstract discrete
structure and the lower-level models are continuous. To evaluate
the performance of our 3MSI models for narrative maps, we present
a quantitative simulation-based evaluation and a qualitative eval-
uation with case studies and expert feedback. We find that our SI
system can model the analysts’ intent and support incremental
formalism for narrative maps.
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1 INTRODUCTION
Narratives are systems of stories [27]—sequences of events con-
nected in a coherent manner. Narratives are fundamental to the
sensemaking process and our understanding of the world [38], as
humans use them as a natural way to capture relationships between
sequences of events, alongside the goals, motivations, and plans of
actors [24]. Narrative sensemaking tasks range from intelligence
analysis [22], where analysts try to find hidden or implicit connec-
tions between events, to journalistic analysis of news narratives,
where analysts seek to understand the big picture across many
articles [11].

To help analysts in sensemaking tasks, scholars have developed
visual analytics tools, which aid analysts in processing and under-
standing greater quantities of data [15]. These tools usually focus
on different parts of the sensemaking process [48]. For example,
some tools focus on the synthesis loop [68] to help analysts gener-
ate hypotheses. Others focus on the foraging loop [33], where the
goal is to gather and select appropriate data for further analysis.

In this work, we focus on the synthesis loop of the sensemaking
process. In particular, we deal with extracting narratives from large
sets of documents describing events (e.g., news articles) in the
form of a graph structure—a narrative map—that represents the
system of storylines [36]. These composite structures can then be
used to aid analysts in narrative sensemaking tasks by providing
a higher-level view and explicit connections based on chronology
[38] that traditional visualization systems, such as those based on
dimensionality reduction (DR) and clustering of documents, would
not well capture.

Recent work has sought to develop computational models to
assist in the narrative sensemaking process [38]. However, cur-
rent approaches are static and lack refinement based on user- or
task-specific goals beyond basic interactions such as searching or
emphasizing specific keywords [4, 12, 36, 43, 56, 62]. More specifi-
cally, we design and evaluate an interactive narrative sensemaking
tool that integrates previous work on narrative extraction and repre-
sentation [36–38] with the semantic interaction (SI) framework—a
framework for visual analytics that enables steering models by
inferring data characteristics that are of interest to the user based
on their interactions [20, 28, 55]. Our tool’s purpose is to help ana-
lysts in narrative sensemaking tasks by building a better narrative
model through incremental formalism [60]—the ability to learn in-
crementally over multiple iterations to produce better models. Our
main hypothesis is that the proposed SI models effectively support
incremental formalism for narrative map models.

In particular, recent developments [22] have shown the capabili-
ties of semantic interaction techniques in aiding the sensemaking
process [8] through human-AI collaboration [67]. Thus, we seek
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to integrate semantic interaction methods with narrative maps in
order to create an interactive AI narrative sensemaking framework
that is capable of learning from the analyst. These techniques could
prove useful to an expert user who needs to extract and under-
stand evolving narratives, such as intelligence analysts trying to
uncover the underlying connections between documents or jour-
nalists attempting to understand rapidly evolving news narratives
[38].

To date, no previous research has sought to integrate seman-
tic interaction with narrative extraction and visualization. Thus,
our research provides a first step towards creating a human-AI
interaction system that aids in the narrative sensemaking process.
Furthermore, our overarching research goal is to explore how to
design an SI model for narratives. This requires dealing with the
issue of how to modify the machine learning pipeline of narrative
extraction to support SI (i.e., how do we model user intent in our
narrative extraction model?).

As a specific example of how semantic interaction techniques
could aid in the narrative sensemaking process, consider an analyst
seeking to understand the causes and effects of a newsworthy event
(e.g., the COVID-19 pandemic or social movements) from news
data. The analysts would generate a visual representation of the
narrative from data and provide their feedback through interactions
(see Figure 1), leading to incremental improvements as they work
through their sensemaking process (e.g., removing biases, changing
the focus of the narrative, or including specific storylines). We show
a concrete example in Figure 9 as part of a case study.

Furthermore, we note that traditional SI systems usually work
directly on projection spaces generated by DR methods [10], lever-
aging distance changes induced by the user on the elements of
the projection space to improve the underlying model. However,
our proposed SI model has to deal with an additional challenge in
the form of an intermediate abstraction layer: the structure space
(i.e., the space of possible narrative graphs). Unlike the projection
space, distance is not meaningful in the structure space. Instead,
relationships are determined by the edges of the narrative graph.
Thus, instead of continuous distance-based interactions, the natu-
ral interactions that arise in the structure space are discrete (e.g.,
removing a specific connection from the graph).

In this context, we need to design a semantic interaction model
that interacts with the discrete nature of the higher-level structure
layer in a meaningful way. To solve this problem, we propose a
general framework that builds upon the Multi-Model Semantic
Interaction (MSI) concept of Bradel et al. [10] and addresses the
challenges of developing SI pipelines with a mix of higher-level
discrete structure space and low-level continuous models. Figure 1
shows an overview of the supported semantic interactions and the
changes they induce on the extraction model.

In summary, the core contributions of this work are as follows:

• The concept of theMixed Multi-Model Semantic Inter-
action (3MSI) pipeline—an SI pipeline comprised of a high-
level discrete structure and a lower-level continuous model
that helps build the structure.

• An SI Model for Narrative Extraction that handles the
intermediate abstraction layer defined by the narrative struc-
ture space and showcases the challenges of 3MSI.

• An Evaluation of the SI model to show whether it supports
incremental formalism in the sensemaking process using
a quantitative simulation-based approach and a qualitative
approach with expert feedback.

2 BACKGROUND AND RELATEDWORK
2.1 Narrative Extraction and Visualization
Narratives are defined as systems of stories interrelated with co-
herent themes [27]. The same story can be told in countless ways,
leading to a distinction between the underlying story itself and
its representation. Narratological studies seek to understand the
relation between stories and their representations [1, 49].

Most computational narrative representation and extraction
methods rely on event-based models [36, 43, 56]. Events are the
fundamental unit of narratives [38] and they represent actions in-
volving entities and characters or happenings without casually
involved entities [1]. However, event-based representations are not
the only approach. For example, some works use a topic-level analy-
sis, abstracting the narrative away from specific events [40, 47, 70];
some scholars propose even more fine-grained approaches, such as
claims [61] and named entities [23].

Furthermore, there are three general structures for narrative
representations [38]: timelines [57, 64], trees [4, 43], and directed
acyclic graphs (DAGs) [36, 59, 71]. Of these structures, DAGs pro-
vide the most flexibility by allowing the representation of divergent
and convergent story substructures [36].

Independent of the representational structure of the narrative
model, extraction methods usually rely on optimizing a notion
of narrative quality to generate the narrative representation [38].
There are multiple optimization criteria, such as topical cohesion
[64] (measuring whether two events share the same topic), coher-
ence [56] (measuring whether it makes sense to join two events
together), and coverage [58] (measuring whether the narrative is
properly covering the events). In this work, we use an extraction
approach that maximizes coherence subject to coverage constraints
[36].

In the context of visual analytics and information visualization,
narratives and storytelling are common techniques used to present
data [51, 54, 63]. In particular, presenting visualization as stories
can be used to aid in the sensemaking process [31, 32]. Visual
storytelling systems can help users detect relationships, structures,
and other patterns, which can help in confirming hypotheses or
gaining additional knowledge [3, 63]. In this regard, constructing
and interacting with visual narratives could be interpreted through
the lens of a visual knowledge generation process [53], as users
generate new knowledge as they work through their hypotheses
and insights with the visual narrative model.

In this work, we develop an interactive visualization model of
narratives based on the narrative map as defined by Keith and Mi-
tra [36]—a DAG describing the connections between events (see
Figure 9 for examples). The original narrative extraction method
for narrative maps is grounded in narrative theory and previous
work has found that it provides analysts with a useful narrative
representation for sensemaking tasks [36, 37]. However, subsequent
work showed that this narrative representation could be improved
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Figure 1: Overview of the semantic interaction model for narrative maps and its core interactions. The analyst modifies the
original map on the left by: (1) adding an edge between events a and e, (2) adding event c, (3) removing event d, (4) removing the
edge between events e and g, (5) grouping events b, f, and h by assigning them to the same cluster. After this, the system makes
changes to the extraction process based on the interactions and generates a new map that integrates the analyst’s interactions
into the model.

by following a series of design guidelines [38] based on an empiri-
cal study of how analysts create and use narrative maps to solve
sensemaking tasks. Thus, we implement an improved version of the
extraction method following these design guidelines to support our
semantic interaction model. However, we note that the core contri-
bution of our work is the semantic interaction model, rather than
the incremental improvements to the narrative extraction process.

2.2 Semantic Interaction
Semantic interactions [19] exploit the natural interactions within a
visualization—usually a projection of the data in a lower dimension
space—to learn the intent of the analyst. In particular, instead of
trying to manually modify parameters to model a specific concept,
semantic interactions learn the parameters associated with that
concept from user interactions and changes in the visualization.
Semantic interactions have seen applications in text analytics [20],
images [28], and other quantitative data with high dimensionality
[55].

Training
Loop

ML Model Semantic Interaction Analyst

Sensemaking
Loop

Projection Space

Figure 2: The traditional semantic interaction pipeline has
the analyst interact with a dimensionality reduction model
by making changes to the projection space. These changes
are captured by the machine learning model and used to
generate a new projection space. The process repeats as the
analyst works through their sensemaking process.

Figure 2 shows semantic interaction as a bidirectional pipeline
[17] based on an interactive DR model [10], the most common
approach used when implementing SI systems. In this pipeline,
analysts use the visualized projection to get insights, then they
make changes to this projection by changing the position of data

points. By making these changes, analysts are expressing their
preferences. Thus, based on these changes, the interactive DRmodel
is able to learn the intent of the analyst behind the changes in
the projection. Using this information, the changes are converted
back into a high-dimensional space. Afterward, the modified DR
model updates the projection based on the new high-dimensional
representations. Note that while this example is focused on DR, the
underlying approach is not limited to just DR models and it can be
generalized to other methods, such as force-directed graph layouts
[10, 20].

Regardless of the implementation of the pipeline, it is necessary
to capture the changes from the visualization and turn them into
changes to the model. There are multiple machine learning models
that attempt to solve the bidirectional transforms required to imple-
ment SI, such as Observation-Level Interaction [21], Bayesian Visual
Analytics [29], and Visual to Parametric Interaction [41]. Further-
more, the semantic interaction pipeline can be extended to leverage
multiple models by chaining them and providing functionality and
interactions at each level through the concept of Multi-Model Se-
mantic Interaction [10]. In general, any number of models can be
used in this pipeline. Then, the interaction feedback from the user
is interpreted as a change into one (or many) of the models using an
appropriate inverse. These works show how DRmodels can capture
the different interactions and modifications made by analysts.

However, unlike the previous examples, narratives have an un-
derlying temporal and causal structure [1], and in particular, graph-
based representations of narratives have a discrete structure that
has no natural continuous notion of distance that can be leveraged
to define the necessary inverse transformation like in DR. There-
fore, SI models for narrative or story visualizations must account
for the underlying temporal structure and the discrete nature of
the narrative representation, introducing an additional layer of
complexity to the development of an SI model for narrative sense-
making. To address these issues, we develop the concept of 3MSI,
which accounts for the usage of mixed models (i.e., a high-level dis-
crete structure and a low-level continuous space) in the multi-level
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pipeline. Finally, to date, no previous research has sought to use
SI in a narrative or story visualization setting. Thus, this research
would provide a first step towards creating a human-AI interaction
system that aids in the narrative sensemaking process by allowing
the analysts to manipulate a narrative structure.

3 NARRATIVE MAP EXTRACTION
In this section, we present our narrative extraction pipeline, which
builds upon the extraction algorithm for narrative maps proposed
by Keith and Mitra [36]. We further introduce optimizations to
reduce computational costs and post-processing to align our results
with the design guidelines for narrative maps [38]. However, we
note that the core contribution of our work is building an SI model
for narrative maps, rather than the extraction process itself. We
show the narrative extraction pipeline in Figure 3. There are 2
phases in this pipeline: extraction and post-processing.
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Figure 3: Narrative maps extraction pipeline. The pipeline
consists of twomain phases (extraction and post-processing).

The extraction phase builds upon the original extraction algo-
rithm proposed by Keith and Mitra [36], using UMAP to generate a
projection space [45], HDBSCAN to compute topical clusters [44],
and linear programming to find the optimal narrative map. The
narrative map corresponds to the structure space of our SI model.

Next, the post-processing phase takes the basic map and simpli-
fies it, following the design guidelines defined by Keith et al. [38]. In
particular, the post-processing phase seeks to decrease the overall
complexity of the base map in order to reduce the cognitive load
of the users. Specifically, post-processing involves removing low
coherence edges, transitive connections inside each storyline, and
redundant inter-story connections.

We note that there are two key steps in the extraction phase:
the coherence computation step—which provides a quantitative
measure of how much sense it makes to connect specific events—
and the linear program (LP) formulation itself—which seeks to find
the optimal narrative structure. We focus on these two steps to
develop our SI model.

The coherence computation step relies on DR and clustering. We
use the UMAP [45] and HDBSCAN [44] algorithms, respectively.
The coherence computation step is highly dependent on the un-
derlying projection space. Thus, our SI model intervenes at the
projection space level to induce changes in the coherence values.
The LP formulation step handles structural constraints and inte-
grates the coherence values from the previous step. Furthermore,
the LP formulation can be modified to handle constraints induced
by the user interactions directly.

We present the LP used for extraction in Figure 4, which seeks to
maximize the coherence of the map. We note that compared to the
original formulation [36], our approach allows multiple endings
and removes unnecessary constraints to reduce computational costs

while maintaining the general structure. We provide more details
in Appendix A

Figure 4: Linear program used to obtain the optimal narrative
map (i.e., the basic structure space).

Finally, we note that the interactive and iterative nature of SI
can lead to overfitting issues [14] as the model attempts to satisfy
the incremental requirements imposed by the user through each
iteration of semantic interactions. Furthermore, each interaction
performed by the user only affects a small subset of the data, which
can lead to further overfitting issues, similar to how few-shot learn-
ing methods are prone to overfitting issues in general [65]. Thus,
we include a regularization term that seeks to minimize the sum of
all edge weights (i.e., 𝐿1 regularization) and produce a sparse and
less complex solution [16]. We discuss the effects of regularization
in more detail in Appendix D.

4 SEMANTIC INTERACTION MODEL
In this section, we present our general 3MSI concept and how to
address the challenges of using a mix of continuous spaces and
discrete structures in the SI pipeline. Then, we present the SI model
for narrative maps.

4.1 Mixed Multi-Model Semantic Interaction
The concept of 3MSI deals with a specific type of MSI where the
top-level model of the SI pipeline—which is associated with the
visualization shown to the user—is represented by a discrete struc-
ture space. Furthermore, the model must not have a continuous
notion of distance that can be leveraged to model user interactions.
For example, a graph represented with a force-directed layout can
use a continuous notion of distance to model interactions, but a
graph represented with a hierarchical layout would not be able to di-
rectly translate display distances into model changes (e.g., narrative
maps).

The general 3MSI pipeline is shown in Figure 5. In this pipeline,
the lower-level model uses a continuous representation and the
high-level model corresponds to a discrete structure. This model
extends the traditional MSI approach [10]—which only considers
continuous spaces as internal models—with an additional layer of
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abstraction in the form of a discrete structure space, which provides
users with further scaffolding to perform sensemaking tasks.

Once the user perceives the visualization associated with the
high-level model, they can interact with it. However, the introduc-
tion of a discrete structure in the 3MSI framework makes capturing
user interactions and feedback for semantic interaction purposes
more difficult compared to the traditional pipeline. The interaction
feedback needs to be interpreted and fed to the inverse models
in an appropriate manner. Defining how to interpret and feed the
interactions back to the inverse models is the key step in using
the 3MSI framework. Once the feedback has been captured by the
models, the updated parameters are stored and used alongside the
original data to update the visualization. This process repeats as
the user keeps interacting with the updated models.

In the context of our work, the forward models are defined by the
narrative extraction pipeline, with the low-level model correspond-
ing to the UMAP projection and the higher-level model correspond-
ing to the narrative structure itself. The inverse models depend
on the specific type of interactions that we define and can rely on
mathematically rigorous, heuristic, or probabilistic approaches [17].
In our implementation of 3MSI for narrative maps, we consider
heuristic approaches, rather than defining formal mathematical in-
verses. In particular, we rely on adding specific constraints to the LP
definition to modify the structure space and using semi-supervised
learning to modify the projection space.

As mentioned before, interpreting the interactions and feeding
them into the inverse models is the key step in the 3MSI pipeline.
In particular, there are two key challenges that arise at this point.
These two challenges are further amplified by the mixed nature of
the pipeline:

• The placement challenge—how do we choose the levels at
which we will handle each one of the relevant semantic
interactions?

• The transformation challenge—how do we transform changes
from the higher-level discrete structure (e.g., the structure
space) back to the low-level continuous space (e.g., the pro-
jection space)?

We note that these challenges are not necessarily unique to the
mixedmodel context, but the discrete nature of the high-level model
induces extra difficulties (e.g., defining an inverse function between
the discrete structure and the low-level model). Furthermore, the
solutions to these challenges depend on the specific architecture of
the system. In this context, we propose general guidelines to aid in
solving these challenges. In particular, we focus on providing ways
to solve the placement challenge and circumventing the transforma-
tion challenge when possible, as this is the more complex challenge
due to the difficulty of defining proper inverse transformations
for these interactions, which can rely on mathematically rigorous,
heuristic, or probabilistic approaches [17].

The proposed guidelines follow the general design principle
of separation of concerns and apply a divide-and-conquer strategy
when required for more complex interactions, adapting the general
tenets of algorithmic and software design [46] to the context of
our SI framework. More specifically, the goal is to minimize the
need of dealing with multiple levels at the same time—avoiding
the transformation challenge. Assuming that the relevant semantic

interactions have been identified, we present the general guidelines
and specific examples pertaining to our narrative extraction case.

Handling Single-level Interactions: Separation of Concerns. As our
core design guideline is to avoid the transformation challenge and
reduce the implementation complexity of the 3MSI pipeline, inter-
actions that have an intuitive and direct effect on a level should
be implemented exclusively at that level and avoid changing the
other level. This is the simplest case to implement for a semantic
interaction, as it only requires interpreting the changes on a single
level. For example, removing an event from a narrative map has
a direct effect on the structure space (i.e., the model must create
a representation that avoids that event). Thus, we implement this
by only inducing changes to the structure space, without chang-
ing the underlying projection space, avoiding the transformation
challenge.

Furthermore, interactions that can be solved at different levels in
equally valid ways should be solved at the highest level possible (i.e.,
closest to the visualization and the user). As the model moves away
from the visualization and deeper into the semantic interaction
levels, each step makes the resulting changes potentially more
opaque to the user. Thus, we recommend choosing the highest
level possible, as this should provide a solution that is closer to
the changes expected by the user, which would likely be biased by
the visualization. In particular, this would be particularly relevant
in cases where there are more internal lower-level models. In the
narrative extraction context, removing an edge from a narrative
map could be solved at the structure space level by simply imposing
a specific constraint to avoid this edge in subsequent solutions or
at the projection space level by forcing the events of that edge to
be sufficiently distant to reduce the likelihood of being connected.
However, following the guideline of using the highest level possible,
we should choose the structure space level, as it is closer to the user
and thus more likely to produce the intended effect.

Handling Multi-level Interactions: Divide and Conquer. Interac-
tions that are more abstract and complex and do not have a direct
effect on a single level should be separated into their constituent
effects and each one of these should be implemented separately
at a different level as appropriate. By separating the interaction
into simpler components, we address both the placement challenge
and the transformation challenge. Instead of relying on an explicit
inverse function to get from the discrete structure space back to the
continuous space or vice versa—which might not even be properly
defined—we directly induce changes at each separate level follow-
ing heuristics. This strategy can also be easily scaled to pipelines
with many internal lower-level models.

For example, in contrast to the remove event example, grouping
events is a more abstract and indirect interaction, as it does not
specify how the events should be connected in the structure space.
Instead, it simply implies that the events should be “close” and that
the events should be somehow connected. Thus, we implement
this interaction at both levels, inducing a change in the projection
space (closeness) and adding constraints to the structure space
(connectedness). We note that if it is not possible to adequately
divide the semantic interaction by level, then we would have to
deal with finding an appropriate inverse function instead of simpler
heuristics.
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Figure 5: Generalized Mixed Multi-Model Semantic Interaction (3MSI) visualization pipeline.

4.2 Semantic Interaction for Narrative Maps
4.2.1 Pipeline Overview. Following the 3MSI concept, our approach
has an additional abstraction layer compared to traditional SI sys-
tems: the structure space. This space builds upon the projection
space, as it uses the projected representations to compute a dis-
crete structure (the narrative map) that has no natural notion of
continuous distance. The structure space captures higher-level re-
lationships that might not be apparent in the projection space.

In contrast to the traditional pipeline of Figure 2, the proposed
pipeline has an additional level of abstraction: the structure space,
which builds upon the projection space. The analyst interacts di-
rectly with the structure space (i.e., the narrative map), rather than
with the continuous projection space. The changes in the structure
space are used to update the underlying models, either by defining
constraints that affect the narrative extraction process or by in-
ducing changes into the projection space through semi-supervised
learning. Thus, the semantic interactions with the narrative map
can lead to either direct changes to the structure space or indirect
changes to the projection space.

4.2.2 Design Goals for SI in Narrative Maps. Following previous
work [38] and preliminary evaluations with users, there are two
general ways in which narrative maps are used: exploratory anal-
ysis—where users are trying to find the different storylines in
the data and understand the big picture—and directed analysis—
where users seek to understand specific connections between events
and stories. Thus, we seek to design an interactive model to support
these analyses. In particular, there are three core subtasks that we
support:

Correcting Storylines: Analysts need to be able to make cor-
rections to existing storylines. This includes modifying intra-story
connections (e.g., changing a specific edge, removing an event from
the storyline) and inter-story connections (e.g., adding a connection
with a different storyline to highlight common events or entities).
This is mostly related to the directed analysis task, as users are
refining the narrative schema.

Creating Storylines: Analysts need to be able to create new
storylines and integrate them into the narrative map. For example,
analysts might want to add new events or specify which events
should be grouped into a coherent and consistent storyline. This is
mostly an exploratory analysis task, as users are uncovering the
different stories in the data.

Shifting Focus: Analysts need to be able to change the focus of
the narrative map (e.g., changing the main storyline or the overall
contents of the data). This interaction is relevant to both tasks, as

users perform work through the sensemaking process they might
require changing the focus of the narrative.

4.2.3 Relevant Interactions. We capture five relevant user interac-
tions in our model. Examples of these interactions and their effects
are shown in Figure 1. We note that all the user interactions are
done at the structure level, but they might imply a change in the
underlying projection space too. Following the 3MSI framework,
we need to identify the level at which these interactions must be
handled and if necessary divide them into their constituent effects.
We briefly describe the interactions and how they influence the
underlying projection and structure space.

Add/Remove Event: Adding an event implies that the analyst
would prefer for this specific event to appear in all subsequently
extracted narrative maps. Likewise, removing an event implies it
should not appear in any of the subsequently extracted narrative
maps. In our implementation, these interactions only affect the
model at the structure space level, without changing the underlying
projection space.

Add/Remove Connection: Adding a connection between two
event nodes implies that the analyst would prefer for this specific
connection to appear in all subsequently extracted narrative maps.
Likewise, removing a connection implies that it should not appear.
These interactions only affect the structure space.

Group Events (Clustering): This interaction implies that the
analyst would like for these events to appear in the same storyline
or be close to each other in the narrative map (i.e., in the same route
or at least connected in some way). As this interaction is more
abstract and there is no clear definition of how a cluster should be
handled in the structure space, we will handle this interaction at
both levels (projection and structure space).

4.3 Integrating SI into Narrative Extraction
There are two steps in the extraction pipeline where we can im-
plement semantic interaction: the coherence computation step (i.e.,
the projection space) and the linear programming step (i.e., the
structure space). For the coherence computation step, we can mod-
ify the DR model used to generate the projection based on user
interactions (e.g., forcing two events to be close together in the pro-
jection). For the LP step, we can modify the problem formulation
by adding explicit constraints that force the solution to include the
feedback from the user interactions (e.g., removing an event from
the map should prevent it from appearing in the solution again).

Single-level Semantic Interactions:We first deal with seman-
tic interactions that can be handled at a single level by adding
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constraints directly to the LP formulation shown in Figure 4. This is
a direct and straightforward method to model simple changes to the
narrative map. We summarize all induced constraints in Figure 6(a).
In particular, node and edge removal can be directly incorporated
by adding constraints of the form node𝑖 = 0 and edge𝑖 𝑗 = 0, re-
spectively. These constraints ensure that nodes and edges removed
by the user are not included in any of the subsequently extracted
narrative maps. In contrast, node and edge addition are not as direct.
It is not possible to include constraints of the form node𝑖 > 0 and
edge𝑖 𝑗 > 0, as linear programming does not support constraints
with strict inequalities [73]. Instead, we use non-strict inequality
constraints with a small positive number 𝜀 to ensure that nodes and
edges added by the user are included in all subsequently extracted
narrative maps. We set 𝜀 empirically, testing different threshold
values we found that 0.01 for edges and 0.05 for nodes ensured that
the elements were added in a mostly coherent way to the map.

We note that this approach only requires working on the struc-
ture space, as the constraints only induce changes to the extracted
narrative map, rather than the lower-level projection space. Fur-
thermore, as the user interacts with the visualization through their
sensemaking process, the LP formulation will accumulate a series
of induced constraints, forcing the optimization algorithm to find
ways to fit the user feedback into the overall narrative structure it
extracts.

Multi-level Semantic Interactions: Now, we turn our atten-
tion to the more complex interaction of grouping events. Analysts
can group events by manually selecting event nodes and assigning
them a cluster number. For example, in Figure 1, events 𝑏, 𝑓 , and
ℎ are assigned to Cluster 1. Unlike the previous cases, clustering
events is a more complex interaction, as it not only implies that
events should be connected or added directly in the structure space
but also imposes the notion of these events being part of the same
group (i.e., relatively similar).

Following the 3MSI guidelines, we divide the interaction into
two effects: the events should be close in the projection space (close-
ness) and the events should be connected in the structure space
(connectedness). Thus, we first use semi-supervised DR with the
cluster information to keep the events close in the projection space.
Next, we impose constraints on the LP formulation, seeking to
keep the events connected in the structure space. This way, we
induce changes in both levels of the SI pipeline without explicitly
computing an inverse function between the structure space and the
projection space. Instead, we rely on intuitive notions of closeness
and connectedness to create appropriate heuristics.

In more detail, we incorporate these manual clusters as training
information for the DR step that uses UMAP. These clusters would
be created based on user-defined labels (e.g., the user could assign all
nodes with a specific keyword to be part of the same cluster) and fed
to the extraction pipeline. UMAP supports semi-supervised learning
[45]. Thus, including the label information is direct and does not
require further modifications. In particular, we create a label vector
that contains the value −1 for all data points, which means that
no labels have been assigned yet. Then, for each data point that
belongs to a user-defined cluster, we assign the corresponding
integer label to their entry in the label vector, following the format
defined by the semi-supervised UMAP implementation [45]. Next,

we recompute the projection space using the label vector and the
original embeddings. Note that when there are no user-defined
clusters, we simply use the unsupervised version of the method.
Once we obtain the new projection, we use it to recompute the
similarity and clustering tables for the extraction algorithm.

Regarding the structure space changes, we add constraints to
the LP to ensure that the clustered events appear on the map
(node𝑖 ≥ 𝜀). We also impose further constraints—shown in Figure
6(b)—by requiring the user-created cluster to be (weakly) connected,
as shown in Figure 6(c). As with the previous constraints, we set 𝜀
empirically. We found that 0.01 for nodes and 0.05 for the edge sum
worked well in most test runs. In conjunction with the new projec-
tion space, this ensures that the resulting map properly connects
the grouped events. With all these changes, we solve the linear
program again to find the new optimal narrative map.

5 EVALUATION METHODOLOGY
5.1 Data Set
To show the effectiveness of our SI model we use news data covering
the 2021 Cuban Protests that occurred in July 2021—the biggest
protests in decades in Cuba [52]—which provide a sensemaking
task of moderate difficulty for our experiments. We focus mostly
on breaking news, as each news article represents a single main
event [35]. We scraped a data set of 500 online news articles from
20 news sources from different sides of the political spectrum. We
categorized the sources based on external bias ratings taken from
AllSides.com1 and the Media Bias/Fact Check database 2.

Throughout our evaluation tasks, we rely on keywords and po-
litical leanings as labels. Previous research has shown that it is
possible to computationally distinguish political leanings from the
content of a news article [5, 34]. Particularly, in times of political
crises, there is a strong use of partisan content frames, which can
be computationally detected [34]. Thus, we expect our SI model to
be capable of learning such distinctions.

5.2 Simulation Tasks
The human-centered approach [9] is the primary evaluationmethod
for SI systems [6]. However, this method is highly dependent on
human feedback and makes it challenging to compare different SI
systems. This is due to the inherent difficulty of replicating user
interactions in SI systems, as the semantic interactions build upon
each other and modify the internal model through incremental
formalism [60]. To deal with these issues, simulation-based evalua-
tions [6, 7] work by creating a simulated analyst agent that attempts
to replicate human interactions. Since there are no ground truths
available for analyst intent and their cognitive process in general,
these approaches use keywords or other easy-to-define criteria to
label the data. Thus, this ground truth is used to guide the simulated
interactions and compute error rates, allowing us to evaluate the
ability of these models to perform incremental inference [6].

5.2.1 Task Overview and Definitions. We define five simple tasks
with basic narrative goals and easy-to-define ground truths. These
tasks use a series of labels that can be easily extracted from the data

1allsides.com/media-bias/media-bias-ratings
2mediabiasfactcheck.com/search

872



IUI ’23, March 27–31, 2023, Sydney, NSW, Australia Keith Norambuena et al.

1 2

3 4

1 2

3 4

1 2

3

(c) Example Valid Subgraphs

4

For each user-defined cluster  :
    For each node  in  :
        Add constraint:

(b) Clustering Constraints(a) Interaction Constraints

[Remove Event]

[Add Event]

[Remove Connection]

[Add Connection]

Figure 6: (a) Constraints induced by basic interactions (addition and removal). (b) Additional constraints to ensure that user-
defined clusters are connected. (b) Examples of weakly connected subgraphs produced by the previous constraints in the
narrative map.

to simulate the creation of user-defined target labels (i.e., relevant
events, consistent connections, etc.). These user-defined labels are
based on keywords or other metadata that can be easily retrieved
and do not require complex computations. In practice, users would
define more complex and nuanced labels in their sensemaking pro-
cess. Nonetheless, simple labels—based on keywords or pre-defined
classifications—are sufficient to showcase the learning capabilities
of our SI model.

Furthermore, we note that the simulated analyst will only inter-
act with a subset of the potentially relevant nodes or edges from the
data set (i.e., those that appear on the map). Moreover, the model
is not aware of these labels, it only knows about the embedding
representation of the articles and the interaction feedback from the
analyst. We expect the model to be able to learn these user-defined
labels based on the simulated analyst interactions.

Moreover, we make the simulated analysts follow the same rules
in each iteration (i.e., selecting events or edges based on a specific
label). However, we note that each execution of the simulation is
done using a different random seed, which leads to different narra-
tive maps and, in turn, a different sequence of interactions in each
task throughout the iterations, even if the simulated analysts al-
ways follow the same rules. We note that while it would be possible
to create simulated analysts with more diverse interactions, such as
interacting with random subsets of map elements or choosing ran-
dom interactions, we opt to define simple rules for our simulation
in order to reduce sources of variability.

We note that the evaluation metrics all measure the error rate
of the model with respect to a specific element of interest. In par-
ticular, each task has a different metric based on its goal and the
user-defined labels that we use (e.g., a specific set of relevant nodes,
consistent connections, or consistently connected clusters). The
tasks and their evaluation metrics are shown in Table 1. We pro-
vide more details about the implementation of the simulation in
Appendix B.

5.2.2 Specific Task Definitions.

T1 - Remove Irrelevant Events. We define three sub-tasks for T1
using different user-defined labels of increasing complexity. We
start with a simple label based on keywords, where events are
marked as irrelevant if they contain “Florida” or “Miami” in their
headline (41 events). The goal is to create a narrative map that
does not cover these specific events, as they are not relevant to
the protests in Cuba itself or the US response in general. Next, we
move to a more complex label based on the publication source
of the event, where events are marked as irrelevant if they were
published by Breitbart or Fox News (155 events). Both of these news

sources are right-leaning and in general present a highly biased
version of the events with right-wing framing. Thus, the goal is to
create a narrative map that avoids these highly biased articles, thus
providing a more neutral view of the narrative. Unlike the previous
keyword-based approach, this requires the model to understand the
differences between these highly biased sources and other sources.
Finally, the last label is also based on the publication source of the
event, where events are marked as irrelevant if they were published
by any right-leaning news outlet (207 events). Generating a map
that excludes this label is even harder than the previous example,
as it considers highly biased sources the same as sources with only
mild bias, making the distinction fuzzier.

T2 - Remove Inconsistent Connections. T2 is based on our defini-
tion of inconsistent edges (connecting right-leaning to left-leaning
articles and vice versa). Intuitively, minimizing inconsistent edges
in a narrative map leads to a map that does not have abrupt changes
in the framing and coverage perspective. Thus, the goal of remov-
ing these inconsistent edges is to create a map that avoids drastic
changes in the framing and presentation of the facts. We seek
to create a map that does not directly connect left-leaning and
right-leaning articles. Thus, any change in the political leaning of a
storyline would be mediated by an unbiased article, allowing for a
slower shift in framing.

T3 - Clean Up Storylines. T3 is based on our definition of consis-
tent nodes (i.e., having the same political leaning as their storyline).
The goal of cleaning up storylines is to create internally consistent
storylines that share their political leaning and avoid storylines that
shift their political leaning. This is similar to the goal of removing
inconsistent edges, but using a mix of node and edge operations at
a storyline level, rather than edge operations on the whole map. Ide-
ally, this would lead to a map with parallel storylines showing how
each side of the political spectrum presents the events, allowing
analysts to contrast these different perspectives.

T4 - Cluster Events. The goal of this task is to create a narrative
map that properly covers the events from the user-defined clusters,
by creating a consistent presentation of these events. That is, the
nodes of these clusters should be connected according to our def-
inition. The SI model should be capable of inferring other events
(modeled by the changes in the projection space) that should be in
the cluster and connecting them properly, even if the user did not
explicitly label them as part of the cluster. We define two sub-tasks
for T4.

For the first sub-task, we define two clusters based on headline
keywords. The first cluster (41 articles) is made from articles focus-
ing on Florida and Miami. The second cluster (96 articles) is made
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Task Description Interactions Evaluation Metric

Remove Irrelevant
Events (T1)

Generate a narrative that does not include events corre-
sponding to user-defined labels.

Remove Node Fraction of irrelevant nodes with respect to the total
number of nodes in the map.

Remove Inconsistent
Connections (T2)

Generate a narrative with consistent edges according
to user-defined labels.

Remove Edge Fraction of inconsistent edgeswith respect to the total
number of edges in the map.

Clean Up Storylines
(T3)

Generate a narrative with consistent storylines accord-
ing to user-defined labels.

Remove Node, Add
Edge

Fraction of inconsistent nodes with respect to the
total number of nodes in the map.

Cluster Events (T4) Generate a narrative with consistent clusters according
to user-defined labels.

Clustering Fraction of relevant nodes that are not connected
over the total number of relevant nodes in the map.

Add Relevant Events
(T5)

Generate a narrative that incorporates additional events
in a consistent manner according to user-defined labels.

Add Node, Clustering Fraction of relevant nodes that are not connected
over the total number of relevant nodes in the map.

Table 1: Evaluation task description and evaluation metrics.

from US-focused articles, excluding Florida and Miami. The goal
is to create a narrative map that includes coverage of the general
US response and the additional protests in Florida. For the second
sub-task, we define two clusters based on publication source and
political leaning. The first cluster (83 articles) is made exclusively
from articles published by Breitbart, a highly biased news source.
The second cluster (92 articles) is made from articles published by
unbiased sources (AP news and Reuters). The goal in this example
is to create a narrative map that includes highly-biased coverage
from Breitbart and unbiased coverage. The resulting map would
help an analyst compare and contrast these perspectives.

T5 - Add Relevant Events. We define two sub-tasks for T5. For
the first sub-task, we define relevant events as those that contain
“Florida” or “Miami” in their headline (41 articles). The goal is to
generate a narrative that includes events about the protests in
Florida. To do this, the analyst would mark relevant events in the
map as part of a single cluster and add more relevant events. These
two interactions tell the narrative extractionmodel that the relevant
events are closely related and that the narrative map should also
integrate more relevant elements into the map, respectively. For
the second sub-task, we define relevant events as those that contain
“Biden” in their headline (92 articles). The goal is to generate a
narrative map that includes events about the response of the US
president to the Cuban protests.

5.3 Qualitative Evaluation
To perform a qualitative evaluation of our model, we first imple-
mented an interactive prototype that allows analysts to extract
narrative maps and use semantic interactions on the extracted nar-
rative maps. Using this prototype, we studied two different usage
scenarios for SI and narrative maps (COVID-19 and Cuban protests).
Then, to evaluate whether our proposed SI model provides value
to actual users, we performed an evaluation and review with three
experts in visual analytics working in the intelligence analysis
domain. Furthermore, the prototype was shown to two analysts
working in the same domain. In particular, we discussed the general
capabilities of the model and the prototype, the resulting maps of
each case study, and the effects of the semantic interactions as we
navigated the different examples. Due to space constraints, we only
present the COVID-19 case study in the main article and leave the
other case in Appendix C.

Case Study.We used a data set about news on COVID-19 taken
from the design guidelines study [38] which contains 40 documents.
The goal of the analyst in this case study is to understand the global
spread of COVID-19 and its effects during January 2020. We note
that, unlike the simulated analysts, we do not attempt to correct the
map until its error rate is zero in the case study. Instead, we show a
more natural approach that combines different types of semantic
interactions to evaluate their quality as an analysis tool in a more
realistic context. Furthermore, we only perform a few iterations,
showing that the model provides valuable insights even with only
a limited amount of semantic interactions.

Interactive Prototype. We implemented an interactive pro-
totype using the Dash Cytoscape library 3. The graph layout of
the narrative map is generated using GraphViz [18] and the DOT
language [25]. We show the interface in Figure 7. This interface
supports all the interactions and tasks defined in our simulation
methodology and case studies, as well as basic navigation and pro-
viding details-on-demand about the elements of the map.

The prototype shows the narrative map on the main canvas on
the left. Events are shown on the map with the landmark icon
and connected with edges . Nodes include the logo of the news
outlet that published the corresponding article. The main storyline
is shown with the dashed blue line . Edge width is based on the
coherence value of the connection.

We note the addition of background gray nodes that show
similar events to those in the map but were not chosen by the
optimization algorithm (i.e., they do not improve the coherence of
the map). These extra nodes are useful to guide the “Add Event”
interaction, although that interaction can also be done directly from
the data table. The gray nodes are organized using a force-directed
layout based on similarity. We note that the original narrative maps
implementation did not show related events [36], focusing only
on the extracted structure. However, we chose to display them to
provide analysts with potentially relevant events and help with the
node addition interaction.

The top menu allows selecting the data set and loading it into
the system . The top menu also contains the core interactions
that allow users to manipulate the narrative map, such as “Add
Event” , “Remove Event” , “Add Connection” , “Remove

3https://dash.plot.ly/cytoscape
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Figure 7: Prototype interface showing an example extracted map in the main canvas, the data set table in the right tab, and the
main menu and extraction parameters on the top.

Connection” , and “Cluster Events”

{

. The parameters of the
extraction algorithm (expected length 𝐾 , minimum average cover-
age, and temporal sensitivity 𝜎𝑡 ) can also be modified by the user.
To create a map, the user must click the “Generate Map” button .

The right panel has six tabs containing additional information
and options (overview, event details, edge details, event comparison,
data set details, and additional options). For the purposes of the
case study, we only used the event details tab (i.e., the contents of
the article) and the data set details tab (i.e., a list of all the articles),
as the rest are used for development purposes. Finally, we note that
the prototype contains other supporting interactions that can aid
in navigation and analysis (e.g., searching), but these interactions
are not used in the current SI model.

6 RESULTS
6.1 Simulation Results
We now present our simulation simulation-based evaluation results
for each task, including the average error rate in each iteration and
how many iterations are needed in each task to achieve the target
error rate. Figure 8 shows all the simulation results. We note that
for all tasks, the error rate tends to zero after a sufficient number of
iterations. Moreover, in most cases, it only takes a few iterations to
reach a low error rate (e.g. around 5% error rate). However, some
tasks are harder than others, taking more iterations to converge.

The hardest task—in terms of iterations needed—corresponds
to the edge-based task T2. In particular, after the initial drop in
error rate, the number of inconsistent edges stabilizes below 2%,
but it takes up to 18 iterations to completely remove them. We
note that this is an inherently harder task compared to event-based

tasks due to the number of possible combinations of edges that can
arise in a graph, which rise quadratically with the number of nodes.
Nevertheless, if our goal is to remove most of the inconsistent
edges and achieve a mostly consistent narrative map, we could stop
between 7 to 9 iterations, which results in around 2% inconsistent
edges.

As an example of intra-task variability, consider T1, where the
second and third cases take longer than the simpler case of removing
Florida/Miami events. The slower convergence is expected, as these
two specific sub-tasks are more complex, as the user-defined label
does not rely on simple keywords, but rather the abstract concept
of political bias. Likewise, T4 shows similar behavior, where the
keyword-based clustering creates an easier task compared to the
more abstract clustering based on bias vs. unbiased news.

6.2 Case Study
We now present the qualitative analysis of the COVID-19 case study
as an extended example. The goal of the analyst in this case study is
to understand the global spread of COVID-19 and its effects during
its first month in January 2020. However, during this time period,
most of the news articles reported events from China, leading to the
data set being mostly focused on Chinese news. Thus, the analyst
needs to set an appropriate starting point that is more likely to lead
to a map detailing the global spread of the virus and its effects. In
this context, the analyst sets the 5th event of the data set—which
reports Japan’s first COVID-19 case—as the starting point, as it
corresponds to the first news article that is not about China in the
data set. In terms of parameters, the analyst uses 𝐾 = 6 for the map
size and default values for the rest. Figure 9 shows all the maps
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Figure 8: Error rate vs. the number of iterations. (a, b, c) T1: Remove Irrelevant Events. (d) T2: Remove Inconsistent Edges. (e)
T3: Clean Up Storylines. (f, g) T4: Cluster Events. (h, i) T5: Add Events.

created throughout the analysis process and the interactions done
by the analyst.

Figure 9(a) shows the initial map and the interactions of the
analyst. The map has two major storylines—shown in the map
as linear subgraphs in gray boxes. The main storyline represents
the most important path in the narrative map and is computed
using maximum likelihood [36] and is shown with blue edges. All
other connections use gray edges. Finally, there is also a singleton
storyline—a storyline with only one element—shown without a
gray box.

On a more detailed inspection, the main storyline has some
relevant events about the effects of the virus and its spread (e.g.,
comments about the US containment strategy, oil prices, vaccines,
and travel restrictions). However, there are also some events about
the effects in China that are not necessarily useful for the analyst’s
goal. The other storylines are also all focused on China. Thus, to
shift the focus of the map towards the global spread and its effects,
the analyst performs the sequence of interactions shown in Figure
9(a).

In particular, the analyst adds two potentially relevant events to
the map: global markets being on edge and the CDC screening at

airports. The first event relates to the global economic effects and
the second to the international prevention strategies. Afterward, to
ensure that the added events are integrated consistently into the
map, the analyst clusters them together with other relevant events
from the main storyline (see the highlighted events in Figure 9(a)).

Then, after completing the interactions, the analyst generates
the newmap shown in Figure 9(b). This map still has two storylines,
and the events highlighted in blue that we assigned to the same
cluster are mostly connected (some indirectly). However, there are
still some issues, such as irrelevant events and the fact that the map
still focuses on China. To fix the first issue, the analyst removes
the irrelevant events on animal or omnivorous markets—which
are potentially important as a cause of the start of the pandemic,
but not relevant to its ongoing spread and effects—and the event
about daily life under quarantine—which is also irrelevant for the
analyst’s goal.

These interactions lead to the map shown in Figure 9(c). This
map has four major storylines and all highlighted events are con-
nected (technically, their induced subgraph is weakly connected).
The main storyline now covers more relevant events, and although
it still contains events about China, they fit into the overall context
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(a) Initial Map + Interactions (b) Second Map + Interactions
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Figure 9: (a) Initial map and analyst interactions (add events and cluster events). (b) Second map and analyst interactions
(remove events). (c) Third map and analyst interactions (add edge and remove edge). (d) Final map after all iterations. Note that
a higher-resolution version is available as part of the supplementary materials.
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(e.g., lockdowns and lack of supplies). Two of the storylines consist
of only highlighted events, thus they focus exclusively on the global
spread and effects on a worldwide scale. Furthermore, these story-
lines are connected through relevant inter-story connections with
the main storyline. Furthermore, the map now has distilled an extra
storyline about Chinese socio-political effects into its own storyline.
Thus, providing a better structure to represent the narrative.

While the current map provides a good overview, it could be
improved further. In particular, the analyst could add a direct edge
between the two events about the oil market. Furthermore, the ana-
lyst could disconnect the event about Saudi Arabia from the Chinese
facade of unity event, as they are unrelated. These operations lead
to the map shown in Figure 9(d). This time the interactions did
not introduce major changes. In fact, two storylines are preserved
from the previous map (main story and Chinese socio-political ef-
fects). The third story is about relevant side effects, such as the US
screening for the virus leading to oil prices dropping due to fear.
However, the last event of this storyline does not seem to fit and
could be removed to further improve the representation. The only
singleton storyline of this map is placed in an interesting position,
its connections imply that the fear in oil markets has extended to
global markets.

Overall, the final structure showcases some of the key story-
lines about the early impact of COVID-19, including the global
spread and the ensuing economic issues. Furthermore, the map still
contains relevant information about the socio-political effects in
China, which were not prevalent in other countries at this point
(e.g., lockdowns and unrest). All these storylines provide valuable
insights into the pandemic and even foreshadow future effects of
the pandemic.

6.3 Expert Feedback
First, the experts provided feedback on the general narrative maps
framework, highlighting how the prototype could provide analytic
value by generating a structured representation of the documents
organized over time into different storylines. Second, regarding the
SI model, the experts found that it was able to properly capture
user feedback in most cases and examples, leading to improved
maps or clearer storylines. Furthermore, we discussed the potential
value of the model for exploratory tasks and directed tasks. For ex-
ploratory tasks, the value of the model was clearer, as they provide
analysts with a series of potentially relevant storylines, which can
be then explored in-depth via SI. In contrast, for directed tasks, the
value would depend on the type of objective, as not all directed
tasks would need a structured approach (e.g., they could be solved
with simpler search-based models). However, if the task required
finding complex connections, then the narrative model provided
more value.

In general, the experts found the general narrative maps frame-
work useful and the SI model capable of properly capturing user
feedback. However, they highlighted two potential issues: trans-
parency and scalability. In particular, the current SI model acts as
a black box, and understanding its effects is not straightforward.
Thus, it could be complemented with an explainable AI approach
to provide clear explanations of the changes induced by the model.
Regarding scalability and performance issues, we note that this is

one of the main drawbacks of the current implementation, as the
optimization approach and the layout algorithm have issues scaling
to larger data sets. Nevertheless, the experts noted that scalabil-
ity and transparency are generally considered open problems in
complex sensemaking systems. Thus, regardless of these issues, the
experts found the 3MSI narrative model to be a welcome advance-
ment to help during the sensemaking process. Finally, the experts
noted that they had not seen any previous work that integrated SI
capabilities with narrative extraction, which provided additional
value and it would be “extremely useful” for certain sensemaking
tasks.

7 DISCUSSION
7.1 Semantic Interaction Model
Our results show that the proposed 3MSI system is capable of inte-
grating analyst feedback into the narrative model. In all tasks, the
average error rate tends to zero as the analyst refines the model,
although we note that the convergence rate depends on the spe-
cific task and its inherent difficulty. Thus, our experimental results
support the hypothesis that our 3MSI model for narrative maps is ef-
fective at supporting incremental formalism [60] based on iterative
interactions.

In general, our 3MSI concept provides a flexible approach that
can enable researchers to use higher-level discrete structures as
outputs of a semantic interaction pipeline in conjunction with a
lower-level continuous model (or even multiple lower-level models).
Furthermore, our proposed guidelines for handling single-level and
multi-level interactions can aid researchers and practitioners in the
construction of complex SI models. However, while the 3MSI ap-
proach is flexible, it could become increasingly complex depending
on the number of levels we include in the pipeline.

Furthermore, in the context of interactive AI [67], if we seek
to add an explainable AI component to complement our SI model,
each additional layer in the system’s architecture increases the com-
plexity of generating explanations, as each transformation between
layers requires some way to “invert” it and extract meaningful
information. This increasing complexity makes dealing with the
transparency issues highlighted in our expert review a more com-
plicated endeavor.

7.2 Semantic Interactions and Narrative
Sensemaking

Our simulation-based analysis provides a replicable and scalable
evaluation for our narrative SI models without requiring human
analysts. However, we note that due to the relative simplicity of
our test tasks compared to real sensemaking tasks, these results
might overestimate the incremental formalism capabilities of the
SI model, yet it provides a good baseline. In practice, we would
expect real sensemaking tasks to require more iterations to refine
the model. Nevertheless, the fact that, on average, we were able to
learn from different types of analyst interactions is promising.

Regarding our qualitative evaluation, our case studies and subse-
quent expert evaluation show that SI is capable of providing value
to analysts and aiding in the sensemaking process. In particular,
both the final structure provided by the narrative map after SI and
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the intermediate maps generated in each step are useful for gather-
ing insights from the data. In this context, despite the main goal of
semantic interaction being to generate a “good” final map by trying
to capture user intent through successive iterations, the iterative
process itself also has value to the analyst. Even if each individual
iteration is not a perfect map, the exploratory nature of this process
can provide valuable insights, which can be compounded as the an-
alyst explores different configurations of the structure space. Even
in cases where SI fails to generate a “good” map, there is value in
the exploratory analysis that it allows.

Overall, our findings suggest that combining semantic interac-
tions with narrative visualizations can assist in the sensemaking
process and allow analysts to change the story according to their
own preferences. Intelligence analysis [22], computational journal-
ism [11], and other fields that require analyzing and understanding
narratives could benefit from our proposed SI model for narrative
maps.

7.3 Model Transparency and Performance
Two of the key issues of the current SI model as identified by our
analysis with experts are transparency and scalability.

Regarding transparency, the system should provide appropriate
explanations of the changes it makes to the narrative to the users.
Thus, it would be useful to complement SI with an explainable AI
model that provides such feedback. In the context of creating a
general interactive AI model [67] for narrative maps, adding an
explainable AI component to our pipeline would be the natural
next step. Furthermore, we also note that the transparency issues
are likely accentuated due to the usage of non-incremental layout
algorithms for the output graphs, which can lead to additional
cognitive load due to drastically different positioning of events.

Regarding performance and scalability, we note that it would be
possible to reduce the computational cost by applying techniques to
group documents together and treat them as a single event, rather
than keeping the assumption of a one-to-one relationship between
documents and events. Such an approach could be helpful to reduce
the computational cost of the map extraction process and the cost
of the subsequent layout generation. However, it would require
extensive pre-processing and appropriate machine learning models
to detect which documents refer to the same event.

In this context, referring back to topic detection and tracking
literature [39, 47] to identify events or other structured narrative
extraction approaches [4, 43, 62] that represent events as clusters of
documents could be useful. In particular, adding an event extraction
model in the middle of the proposed 3MSI pipeline for narrative
maps could help reduce the overall computational cost and make
the model more scalable, as the last step to generate the structure
space is the most computationally expensive part of the pipeline.

7.4 Interaction Ambiguity
While our SI model was able to capture knowledge from the sim-
ulated analyst, there is ambiguity in how to interpret the user
interactions properly. The challenge of defining user intent from
interactions has been called the “With Respect to What” problem
[30, 66] in SI literature. Possible solutions to this issue include
providing additional interactions [66] so that the user can specify

with more precision what they actually want to obtain (e.g., by
using additional interactions) or providing the ability to control
the impact [30] of the interactions (e.g., by designing a weighting
scheme that integrates elements from original representation and
the post-interaction representation). In our particular example, an-
alysts could specify that the current stories should be kept together
by using the clustering interaction. By doing so, the model would
be forced to keep the original storylines in the representation while
also integrating the new story. Thus, ensuring that the model prop-
erly captures the incremental formalization process, rather than
throwing away the previous narrative map. However, further ex-
ploration is required to define a robust model of user interaction
for narrative maps that captures user intent correctly when there
is ambiguity.

Furthermore, based on the feedback from the experts, an im-
portant step that can aid in understanding how the interactions
are working is explicitly showing the changes introduced by the
semantic interactions. Adding such explanations would help users
determine whether the interactions are capturing their intentions
properly when there is potential ambiguity. Furthermore, in case
the semantic interactions have misinterpreted the intent of the
analyst, they could apply corrective interactions to the highlighted
changes and guide the extraction algorithm to generate a new map
that deviates less from the original intent.

7.5 Limitations
Our work is not without limitations. While the general 3MSI frame-
work provides a general approach to semantic interaction, our
specific SI approach for narrative maps is not model agnostic. The
current model is built around the linear programming extraction
model and the use of a DRmethod for the embedding representation
of documents. Thus, any changes to the extraction pipeline would
require figuring out how to integrate constraints into methods.

Regarding the evaluation of the SI model, we note that the
simulation-based experiments only used simple tasks that do not
represent the full complexity range of narrative sensemaking tasks
that analysts could perform with a narrative map. To ameliorate
this issue, we presented in-depth case studies that attempt to repli-
cate real sensemaking tasks and gathered feedback from experts in
visual analytics working in the field of intelligence analysis.

Finally, we note that there are other potential interactions that
could be used to capture the intent of analysts. For example, manu-
ally changing the main story of the narrative map or highlighting
a specific event to mark it as more important. However, the cur-
rent model does not handle such interactions in its current form.
Despite these limitations, our quantitative and qualitative results
show that our 3MSI model has the potential to help analysts mod-
ify computational narrative models through simple interactions
with narrative visualizations, without having to understand the
underlying extraction or representation models used to generate
the narrative visualization.

8 CONCLUSIONS
In this paper, we proposed the concept of 3MSI—MixedMulti-Model
Semantic Interaction—an SI pipeline defined by a higher-level dis-
crete structure and lower-level continuous models. Furthermore,
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we showcased the capabilities of this approach by developing an
SI model for narrative maps, which had a lower-level model in the
form of a document embedding projection space and a higher-level
narrative structure space.

We evaluated our SI model through a quantitative simulation-
based approach. The evaluation showed that the SI model is capable
of integrating the simulated analyst’s interactions into the narrative
model. Thus, supporting the hypothesis that the SI models are
effective at supporting incremental formalism for narrative maps.

Furthermore, our review of case studies and validation with ex-
perts led to valuable feedback regarding the SI model in particular
and the interactive narrative maps framework in general. The ex-
pert feedback showed that the SI model for narrative maps could
provide value to analysts in their sensemaking process. In terms of
broader impact, integrating SI models with narrative maps allows
us to better support the sensemaking loop for narrative sensemak-
ing tasks, such as journalistic analysis of news narratives [11] and
intelligence analysis [22]. However, we note that there are two
key issues in the current SI model for narrative maps: scalability
and transparency. Thus, future work should seek to improve the
extraction approach to allow for the analysis of larger data sets
and explainable AI techniques should be used to improve the trans-
parency of the SI model and the changes it makes to the narrative
maps.

Finally, in terms of broader impact, the 3MSI concept provides a
flexible framework that allows researchers to employ higher-level
discrete structures as outputs of an SI pipeline in combination with
different continuous internal models and representations. Further-
more, our proposed guidelines for dealing with single-level and
multi-level interactions can help academics and practitioners build
complex SI models.
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A NARRATIVE MAPS EXTRACTION
In this appendix, we provide more details about the narrative maps
extraction pipeline, including the coherence computation step, the
linear programming formulation, and the post-processing steps.

A.1 Coherence Computation
The coherence computation step relies on the projection space and
the associated topical clusters [36]. Thus, it depends on the dimen-
sionality reduction and clustering algorithms used to build this
space. In particular, coherence is computed as the geometric mean
between content similarity and topical similarity. The content simi-
larity term is computed based on the normalized cosine similarity
of the projected document embeddings, which are based on the
all-MiniLM-L6-v2 model of the sentence-transformers library [50].
The topical similarity term is computed using the Jensen-Shannon
similarity [26] to compare the distribution of the topical cluster
probabilities of each document.

However, this definition of coherence leads to issues when deal-
ing with data sets that span longer periods of time, such as gener-
ating long-ranging connections between events that are seemingly
related but too temporally distant to be relevant. To deal with this,
previous approaches have used exponential decay factors based on
the temporal distance between events [13, 42, 43, 69, 72]. Thus, we
extend the previous notion of coherencewith a temporal component
that penalizes events that are temporally distant using an exponen-
tial factor. Let Δ𝑡𝑖, 𝑗 be the temporal distance between events 𝑖 and
𝑗 . The new value for coherence is defined as

coherence𝑖, 𝑗 = exp
(
−
Δ𝑡𝑖, 𝑗

𝜎𝑡

)
·
√︁
CS𝑖, 𝑗 · TS𝑖, 𝑗 .

where 𝜎𝑡 represents the temporal sensitivity, a user-defined param-
eter for the extraction algorithm that regulates the rate of decay,
CS𝑖, 𝑗 represents content-based similarity of the events and TS𝑖, 𝑗
represents topical-based similarity of the events. For the purposes
of our work, we measure all temporal distances and 𝜎𝑡 in days
and we use a default value of 30. However, for other data sets and
contexts, it could be necessary to change the units of temporal
measurement.

A.2 Linear Program Formulation
Now we provide more details about the components of the linear
program formulation (see Figure 4).

Variables and Parameters. The map is built by finding the opti-
mal weights for its nodes and edges. These weights are represented
by the node𝑖 and edge𝑖, 𝑗 , respectively, where 𝑖 and 𝑗 represent the
indices of the corresponding events in the data set. These variables
take values between 0 and 1. There are three user-given parameters:
𝐾 , the expected main story length that regulates the size of the
map;mincover, the minimum average coverage for the topical clus-
ters; and 𝜆, the strength of the regularization term in the objective
function. There are also pre-defined parameters that depend on
the results of the projection space. Namely, the coherence values
of each connection coherence𝑖, 𝑗 , and the membership of an edge
to a given topical cluster membership𝑖, 𝑗,𝑘 [36]. In this context, 𝐶
represents the set of topical clusters (indexed by 𝑘). Finally, the

minedge variable represents the minimum coherence value of the
narrative map over the edges and is used as the optimization goal.

Objective Function and Constraints. Following the model
of Keith and Mitra [36], the linear program seeks to maximize
the value of the minimum edge, under the assumption that the
best narrative structure should have no weak connections (i.e., the
minimum coherence of the map is as high as possible). This is done
using theminedge constraints that depend on the coherence values.

In our evaluations, we fixed the regularization strength param-
eter (𝜆) to the inverse of the total number of potential edges in a
directed acyclic graph of size 𝑛. That is, we set 𝜆 = 2

𝑛 (𝑛−1) . Our
empirical evaluations showed that this value worked well for our
purposes (see analysis of results in Appendix D).

Starting Event Constraints. We note that the aforementioned
design guidelines study showed that analysts tend to use maps
with a single source event and potentially multiple endings [38].
Thus, we allow users of our extraction algorithm to select a single
starting event 𝑠 when extracting the map. This is handled by the
node𝑠 = 1 which sets the corresponding starting node as active.
Furthermore, to avoid interfering with the user-defined starting
event, we prevent events that occur before the starting event from
appearing on the map, which is handled by the constraint that
assigns their node variables to 0.We note that it would be possible to
adapt this approach to a fixed ending event, or other combinations
of starting and ending events, including none of them.

Chronological Order. To ensure that the events in the map
follow a chronological order, we impose a series of constraints based
on the index of the events. This constraint assumes that the data set
has been sorted by time before running the extraction algorithm.

Map Size Constraint. This constraint determines the expected
length of the main storyline on the map and thus it regulates the
map size. This constraint is determined by the parameter 𝐾 , which
is defined by the user. We note that the original extraction model
[36] had another constraint to ensure that the sum of edge weights
added up to𝐾−1. However, we removed this constraint and replaced
it with the regularization term that seeks to minimize this sum.

Edge Constraints. These constraints seek to generate the con-
nection structures of the map, relating the incoming and outgoing
edges of each node with the activation value of that node. Unlike
the original formulation by Keith and Mitra [36], we use inequality
constraints for the outgoing edges, as this approach allows for maps
with multiple endings.

Coverage. To ensure appropriate topical diversity and coverage
over the narrative map, the original formulation of the extraction
algorithm also included a coverage constraint based on the average
coverage of each topical cluster (obtained from the HDBSCAN
clusters in the projection space). A topical cluster is considered
to be covered if sufficient edges belonging to the cluster (defined
by the membership𝑖, 𝑗,𝑘 parameter) are on the map. The minimum
coverage required (mincover) is a user-defined parameter. We set
20% minimum coverage as the default value of this parameter.

A.3 Post-processing
We note that despite the use of regularization, the optimal map
in terms of coherence could still be highly complex and have re-
dundant edges or connections that make it difficult for a human to
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interpret adequately. Thus, as described in the extraction pipeline,
we perform a series of post-processing on the optimal map for
usability purposes and to keep in line with the design guidelines
defined by Keith et al. [38].

Pruning Edges. In particular, after extracting the initial narra-
tive map, we pruned edges to reduce the cognitive load for users. In
particular, we only keep a certain number of edges per node, thus,
restricting the branching factor of the DAG. Furthermore, after the
initial pruning, we remove any leftover edges that have too low of
a coherence value in the final model.

More specifically, we only leave the top ⌈
√
𝐾⌉ outgoing edges

of each node and remove the rest. Next, we removed all edges that
had less than 0.1/𝐾 coherence after re-normalizing edge weights.
In both formulas, 𝐾 is the map size parameter of the linear program
described in the previous subsection. These heuristics were found
through empirical testing.We note that the cut-off values depend on
𝐾 because a fixed cut-off value became problematic for larger maps,
as it leads to too many edges being filtered. These heuristics helped
prevent most cases of excessive edge density without eliminating
potentially relevant connections.

Storyline Identification. Next, we also identified the different
storylines of the narrative map. This is a necessary step to remove
the transitive connections from storylines (i.e., redundant connec-
tions) and to minimize inter-story connections (i.e., only keep the
first and last of such connections for each pair of stories). Further-
more, identifying these storylines is used for evaluation purposes
(e.g., analyzing a specific storyline of a map). However, the orig-
inal narrative map extraction method does not directly generate
a partition of the map into storylines, it only highlights the main
storyline [36]. Thus, we need to develop an algorithm to partition
the map into storylines.

To do this, we use the recursive algorithm described in Algorithm
1. This algorithm takes a narrative map as an input (i.e., a weighted
directed acyclic graph), with potentially many sources (starting
events) and sinks (ending events). This algorithm is based on the
idea that we can recursively extract the storylines by finding the
most coherent paths of the graph in each step. The first storyline is
easy to identify, as that would simply be the main storyline, which
we identify by finding the maximum likelihood chain of the graph
based on coherence. To find the rest of the storylines, we first re-
move the events from the main storyline and all the corresponding
connections. Then, we find the new “main” storyline using what-
ever events and connections remain in the graph. We recursively
perform this process and store all the extracted storylines until
only storylines of size 1 remain (i.e., a graph of disconnected single
events). As we remove storylines, we might end up separating the
graph into multiple connected components. Intuitively, these com-
ponents correspond to different parts of the narrative (e.g., topics)
and should contain different storylines.

Transitive Reduction.We note that the original implementa-
tion of the narrative map extraction algorithm had an additional
constraint to reduce redundant transitive connections [36]. How-
ever, this approach introduced a cubic number of constraints in
the worst case, greatly increasing the computational cost. Thus,
removing this constraint from the optimization problem and per-
forming post-processing to remove transitive connections reduces

Input: Narrative map 𝐺 = (𝑉 , 𝐸) - Weighted directed
acyclic graph with weights between 0 and 1.

Output: List of sequences of events (storylines).

Function GraphStories(G):
if |𝐸 | == 0 then

return List(Singletons(V)) // Base Case -

graph with no edges.

end
𝑠𝑝 = ShortestPath(G) // Shortest Path

(Negative Log Likelihood).

𝐻 = 𝐺 − 𝑠𝑝 // Delete Nodes in 𝑠𝑝 (and edges)

from graph 𝐺.

𝐻 = Normalize(H) // Normalize outgoing edge

weights (sum = 1).

return List(sp) + GraphStories(H) // + means

list concatenation.

Algorithm 1: Recursive algorithm to extract all the story-
lines based on their overall coherence.

the overall computational cost of the extraction process, allowing a
more responsive system.

In particular, for each identified storyline in the graph, we use
transitive reduction [2] on the corresponding storyline sub-graph
making sure to keep the edges with higher coherence values. Af-
terward, we re-normalize the edges and obtain the final storyline.
Note that this process does not affect inter-story connections.

Inter-story Connections. For inter-story connections, we only
keep the first and last of such connections for each pair of storylines
on the map. To do this, we find the boundary edges between the sub-
graphs defined by each storyline. Then, we keep the first identified
connection and the last identified connection, based on the indices
of the corresponding nodes. After removing all redundant inter-
story connections, we re-normalize the edges of the graph.

B SIMULATED ANALYST IMPLEMENTATION
In this appendix, we describe our simulation experiment and the
implementation of the simulated analyst.

B.1 Simulation Overview
Throughout our experiments, we test the ability of the models to
learn incrementally over the course of several interactions with the
simulated analyst. Due to the computational costs of executing the
narrative map extraction process and the subsequent interactions
and refinements, we only take 10 samples of each task. Each sample
will generate slightly different narrative maps, as the underlying
embedding spaces are projected and clustered with a different seed
each time. Our results show that regardless of the starting condi-
tions, after sufficient interactions the models are capable of learning
based on the simulated interactions. Furthermore, we fixed the start-
ing event for all maps to reduce variability and make comparisons
easier. In particular, we chose a news article from an unbiased
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source (Reuters) describing the start of the protests: “Cuba sees
biggest protests for decades as pandemic adds to woes”4.

In each iteration, we first compute the evaluation metric for
the current narrative map using the definitions in Table 1. Then,
the simulated analyst performs a series of interactions with the
model and generates a new map. We rinse and repeat until the error
rate achieves the desired target level (0%). Finally, we discarded
all samples that started with a 0% error rate, as it would not make
sense to use semantic interactions to improve the narrative model
in those cases. We kept executing our simulation until we obtained
10 valid samples.

Finally, we note that the SI system has no awareness of the
user-defined labels throughout the evaluation process. Only the
simulated analyst knows these definitions and uses them to deter-
mine its actions in each task. Moreover, the analyst only interacts
with a subset of the potentially relevant elements from the data
set, but we expect the model to be able to generalize based on
these interactions. For example, for T1 with the Miami/Florida la-
bel (41 events in the data set), the average number of total user
interactions throughout the simulation was approximately 7 node
removals. Thus, the different metrics seek to capture the model’s
generalization ability.

B.2 Simulation Definitions
We provide more details on the definitions used for the task defi-
nitions and associated evaluation metrics in Table 1. In particular,
the tasks make use of the following definitions:

• Relevant and Irrelevant Nodes We define event nodes
as relevant if they are associated with a user-defined label,
which can be defined by the presence of a keyword, the
political leaning of the associated news outlet, or even the
news outlet itself. We define irrelevant nodes in a similar
manner.

• Inconsistent Edges We define edges as inconsistent if
they connect articles from opposite political leanings. For ex-
ample, articles from right-leaning outlets with articles from
left-leaning outlets, or vice versa. Any other combination is
considered consistent.

• Inconsistent NodesWe define event nodes as inconsistent
with respect to their storyline if they conflict with the most
frequent political leaning of their storyline, excluding unbi-
ased articles. Ties are broken by selecting the first political
leaning in the storyline.

• Connected Nodes We define event nodes as connected
with respect to their cluster if they fulfill any of the following
conditions based on general narrative structures [36]: they
are directly connected to another relevant node of the same
cluster, they are in the same storyline as another relevant
node of the same cluster, or they share direct predecessors or
successors with another relevant node of the same cluster.

4https://www.reuters.com/world/americas/street-protests-break-out-cuba-2021-07-
11/

B.3 Simulated Analyst Actions
We now describe the actions taken by the simulated analyst in
each iteration for each task. We note that each iteration consists of
multiple actions (e.g., multiple node removals or additions).

T1 - Remove Irrelevant Events. The simulated analyst re-
moves all nodes marked as irrelevant according to the defined
target labels. These interactions should eventually lead to a narra-
tive map that avoids events with this keyword. When there are no
more events to remove from the map, the error rate is zero and the
simulation ends.

T2 - Remove Inconsistent Connections. The simulated an-
alyst removes all nodes marked as inconsistent according to our
criteria. These interactions should eventually lead to a narrative
map that avoids inconsistent connections. When there are no more
connections to remove from the map, the error rate is zero and the
simulation ends.

T3 - Clean Up Storylines. For each storyline in the narrative
map, the simulated analyst removes all inconsistent edges. To do
this, the simulated analyst first computes the political leaning of a
storyline by selecting the most frequent political leaning, excluding
center articles. The simulated analyst breaks ties by selecting the
political leaning of the first biased article in the storyline.

Once the political leaning of a story has been chosen, all nodes
inside that have the opposite leaning are marked as inconsistent.
To make the storyline consistent, the simulated analyst disconnects
the inconsistent nodes from the rest of the storyline by removing
the inconsistent edges in the storyline. Then, the simulated ana-
lyst reconnects the storyline by adding edges between the events
that are missing connections. See Figure 10 for an example of this
interaction.

RInitial
Storyline L L R

R L L Rx x

R
L L

R

Remove
Inconsistent
Edges

Add
Consistent
Edges

(a)

(b)

(c)

Figure 10: Example of the simulation steps for task T3 (Clean
Up Storylines). (a) The initial storyline. (b) Removing the
inconsistent edges from the storyline. (c) Reconnecting the
storyline with consistent edges.

These interactions should eventually lead to a narrative map
with only consistent storylines. Note that we do not delete the
inconsistent nodes, as they could be re-used as part of another
storyline by the extraction algorithm. When there are no more
inconsistent nodes in all storylines of the map, the error rate is 0%
and the simulation ends.

T4 - Cluster Events. For each pre-defined cluster label, the
simulated analyst marks the relevant nodes in the narrative map as
part of their respective clusters. These interactions should eventu-
ally lead to a narrative map that integrates the relevant clusters as
part of the map by properly connecting them in the same storyline
or through common predecessors or successors. When there are
no more relevant isolated nodes on the map, the error rate is zero
and the simulation ends. The simulation also ends if there are no
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more relevant nodes to add to the cluster (note that this termination
condition did not occur in practice during our experiments).

We note that our clustering task only considers disjoint clusters.
The current implementation of our SI model is not able to handle
the multi-label case, where a single event belongs to more than one
cluster.

T5 - Add Relevant Events. The simulated analyst marks the
relevant nodes present in the narrative map as part of a single
cluster. Then, they add new nodes to the map by taking the first
10% (rounded up) of the relevant events that did not appear on the
map from the data set.

In this task, we cannot measure success based on the simple
frequency of relevant events associated with the user-defined label,
because our goal is not to generate a map filled with only the rele-
vant events. Instead, we care about the added events being properly
integrated into the narrative map, which is why we need to use both
clustering and node addition in this task. Thus, we use the same
metric from the clustering task (T4), but with only a single “cluster”.
Thus, like in T4, when there are no more relevant isolated nodes
on the map, the error rate is zero and the simulation ends. The
simulation also ends if there are no more events to add (although
this ending condition did not occur in practice). Preliminary eval-
uations showed that using node addition without clustering does
not lead to convergence, because the model does not understand
that the added nodes are necessarily related.

C CASE STUDY: CUBAN PROTESTS
The goal of the analyst in this task is to gain an understanding of
the causes and effects of the Cuban protests using a smaller version
of the Cuban data set with only 160 documents. For the effects,
the analyst considers both what happened in Cuba itself and any
relevant developments in the US, due to its geopolitical importance
in this context. Relevant effects range from the general response
by the administration to more specific socio-political effects. The
analyst generates a map using the same event we used for our
simulation experiments, namely: “Cuba sees biggest protests for
decades as pandemic adds to woes”. In terms of parameters, the
analyst uses 𝐾 = 6 for the map size and default values for the rest.
Figure 11 shows the resulting maps and interactions of the analyst.

Using these parameters, the system generates the map shown
in Figure 11(a). This map has two major storylines, as well as four
minor singleton storylines. The main storyline starts focuses on the
Cuban protests at first, but it slowly starts to drift toward US-related
issues. The side storyline that comes afterward is focused mostly
on socio-political effects in the US, including protests and political
struggles. However, there are two events that are relevant to the
Cuban protests themselves. Furthermore, the first two singleton
storylines simply reinforce some aspects of the protests (e.g., ag-
gressive suppression of the protests). The second two singleton
storylines, which happen after the Cuban president claims that the
protests are a US plot, provide some insights into how the US is
responding to these events, particularly, there is political infighting
in Florida and calls to action from the senate. Despite some use-
ful insights, the current structure is not that practical as it has a
disjointed coverage of different aspects of relevant events. Thus,

the analyst will perform semantic interactions to generate a better
structure to represent the narrative.

In particular, the analyst wants to find out more about the effects
on Florida, as several events mention this state and related entities
or keywords (e.g., DeSantis and Miami). The analyst adds two rele-
vant protest events, as seen in Figure 11(a). Next, the analyst groups
these events with the DeSantis events that were already present
the clustering interaction. The expected result of this interaction is
a map that focuses more on the effects on Florida and the US.

The actual results are shown in Figure 11(b), where we see four
major storylines and four singleton storylines. The main story-
line is now exclusively focused on the Cuban protests, including
counter-protests and government repression. which is a nice side
effect of the interactions. Second, we see a storyline that has only
highlighted events that the analyst clustered, corresponding to a
storyline focused on Miami. Next, the third storyline starts with
a DeSantis event but then turns its attention to a series of events
about trying to provide internet access to Cubans. This connection
makes sense when delving deeper into the article’s contents, which
mentions that DeSantis is pushing for the administration to provide
internet access to the island. One of the singleton storylines right
after this also provides further insights, as Cuba outlaws social
media usage after the protests. The last storyline also mentions
the internet cutoff on the first event, but then shifts focus toward
calls for military actions against the Cuban regime. Afterward, the
storyline gives us some insights into the potential causes of the
protests from different points of view. From the Cuban perspective,
the US embargo was the key cause, although the government also
admits some blame for the economic shortages and lack of supplies.
From the Cuban Americans’ perspective, it is more about freedom
than supply shortages. Finally, the last event highlights how the
final response of the government was to attempt to fix the supply
issues by giving more rations without any fundamental change to
the regime. While further improvements would be possible, the
current layout and contents provide a decent overview of the main
developments of the Cuban protests, and the protests in Florida, as
well as some insight into the potential causes of the protests (e.g.,
supply shortages), as well as some relevant effects (e.g., banning
social media and censorship).

D REGULARIZATION EXPERIMENT
In this appendix, we present an additional simulation evaluation
to study overfitting issues and the effect of regularization in our
extraction model.

We addressed potential overfitting issues by adding a regular-
ization term to the objective of the linear program. However, we
have not shown the actual effects of overfitting when this term is
not considered nor how this addition properly curtails overfitting
issues. Preliminary qualitative evaluations showed that attempting
to solve certain tasks led to overly complex maps after perform-
ing semantic interactions. Thus, we added a regularization term
into the extraction model to minimize the risks of overfitting. In
particular, the regularization term added to Figure 4 acts like 𝐿1
regularization. This term seeks to minimize the sum of all edge
weights, leading to a sparse solution in the number of edges [16].
This provides two-fold benefits: first, it simplifies the resulting map,
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(a) Initial Map + Interactions

(b) Final Map

Events 
already on 

the map that 
were added 
to the blue 

cluster by the 
analyst

Events that were 
manually added to the 
map and then added 
to the blue cluster by 

the analyst

Figure 11: (a) Initial map and interactions performed by the analyst (add events and cluster events). (b) Final map after a single
iteration. Note that a higher-resolution version is available as part of the supplementary materials.
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making it easier to understand, and second, it reduces the likelihood
of overfitting (i.e., generating an overly complex map after using
SI).

Following these qualitative evaluations, we ran the simulation
experiments again to compare both the basic model without reg-
ularization and the regularized model. For the purposes of this
simulation-based evaluation, we use the simplified version of the
Cuban protests data set with only 160 documents instead of the
full data set with 500 documents (i.e., the same data used in the
case study of Appendix C), as running the full-scale simulation is a
much more computationally expensive endeavor.

In this context, we first need to define a way to measure over-
fitting in the context of narrative map extraction. We do this by
measuring the change in complexity of the map after using SI. A
drastically higher complexity value is associated with a higher cog-
nitive load when analyzing the map (e.g., consider the difficulty
of using a map with triple the number of edges compared to the
baseline). To measure the complexity of the map we use the num-
ber of nodes and edges as our main metrics. We note that these
complexity values do not have an inherent target or optimal value
and their values depend on the map size parameter (𝐾) used in
the extraction. However, changes in these complexity measures
after interacting with the narrative map are related to our intuitive
understanding of changes in narrative complexity. Hence, their val-
ues must be evaluated relative to a baseline—the initial map before
using semantic interactions.

We summarize our results in Figure 12. Due to space constraints,
we only show one example per task for those tasks that had multiple
examples. The first column compares the error rate for the basic
model and the regularized model. The second and third columns
show the average number of nodes and edges, respectively, for each
model.

We note that the error rate converges to zero as expected in both
models. There are no apparent differences in the rate of convergence
between the two models. Thus, both models are able to capture user
intent, just like in the full-scale simulation with the larger version of
the data set. Regarding graph complexity, we note that, in general,
the basic model usually has a slightly higher base complexity. This
is expected, as regularization should reduce the model complexity
in general. However, the difference is not particularly significant.

Next, we note that in tasks T1 and T2 both models behave simi-
larly in terms of complexity—there are no significant changes in the
number of edges or nodes throughout the simulation. However, we
note that for T2 the regularized model converges significantly faster
compared to the basic model. This faster rate of convergence could
be due to the edge-based nature of task T2. Since the regularized
model tries to construct sparser maps, the maps are less likely to
contain inconsistent edges.

Regarding T3, we note that the basic model has overfitting issues.
The number of nodes increases compared to the initial map and
remains higher throughout the simulation. The number of edges
increases initially but then returns to lower levels. In contrast, the
regularized model only shows a mild increase compared to the basic
model.

For T4 and T5, we note that the basic model has drastic increases
in the number of nodes and edges even after a single iteration. The
regularized model also has an increase in these metrics, but the

changes are muchmilder. Thus, following our interpretation of com-
plexity, the basic extraction model with no regularization has over-
fitting issues for the clustering-based tasks, while the regularized
model is able to reduce the overfitting impacts of the interactions.

In general, we note that semantic interactions that only work on
the structure space level do not seem to lead to significant overfit-
ting issues when used in simple tasks (T1 and T2) and only mild
overfitting issues when used in more complex tasks (T3). However,
semantic interactions that work on the projection space can lead to
significant overfitting issues (T4 and T5). Nevertheless, the addition
of regularization minimizes the impact of semantic interactions
on narrative map complexity and solves most overfitting issues
under our complexity-based interpretation for all tasks, without
significantly increasing the convergence of the error rate.
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(b) T1 - Remove Irrelevant Events: Fox News/Breitbart
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(d) T2 - Removing Inconsistent Edges
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(e) T3 - Clean Up Storylines
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(g) T4 - Cluster Events: Breitbart vs. Unbiased News

0 2 4 6 8 10
Iterations

0

20

40

60

80

100

120

# 
of

 E
dg

es

0 1 2 3 4 5
Iterations

0.0

0.2

0.4

0.6

Er
ro

r R
at

e

0 1 2 3 4 5
Iterations

0

10

20

30

40

50

60

# 
of

 N
od

es

(h) T5 - Add Relevant Events: Florida/Miami
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Figure 12: Overfitting analysis for the basic model vs. the regularized model. The left column shows the error rate plots. The
middle column shows plots for the number of nodes throughout the simulation. The right column shows plots for the number
of edges throughout the simulation. Both models converge towards zero error rate, but the basic model has overfitting issues in
tasks T4 and T5 based on its drastic increases in graph complexity metrics (number of nodes and edges).
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