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Abstract

Dimension reductions (DR) help people make sense of image collections by organizing images in the 2D space based on
similarities. However, they provide little support for explaining why images were placed together or apart in the 2D space.
Additionally, they do not provide support for modifying and updating the 2D representation to explore new relationships and
organizations of images. To address these problems, we present an interactive DR method for images that uses visual features
extracted by a deep neural network to project the images into 2D space and provides visual explanations of image features
that contributed to the 2D location. In addition, it allows people to directly manipulate the 2D projection space to define
alternative relationships and explore subsequent projections of the images. With an iterative cycle of semantic interaction
and explainable-Al feedback, people can explore complex visual relationships in image data. Our approach to human—Al
interaction integrates visual knowledge from both human-mental models and pre-trained deep neural models to explore
image data. We demonstrate our method through examples with collaborators in agricultural science and other applications.
Additionally, we present a quantitative evaluation that assesses how well our method captures and incorporates feedback.

Keywords Interactive dimension reduction - Semantic interaction - Explainable Al - Image data

1 Introduction

People commonly use dimension reduction (DR) methods
to explore data for sensemaking tasks [1]. DR methods
excel at mapping high-dimensional data to alow-dimensional
space (typically 2D) while preserving meaningful struc-
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ture and relationships. Several methods add interaction to
enable exploration, modification, and understanding of the
2D space. For example, some systems incorporate semantic
interactions which couple cognitive and computational pro-
cesses by inferring meaning behind interactions and updating
the model accordingly [2].

However, most interactive DR methods have limited sup-
port for image data, often representing images as arrays
of pixels and treating them the same as tabular data. This
not only limits the DR’s ability to determine similarities
between images but also often inhibits interaction meth-
ods for understanding the 2D space. For example, Self et
al.’s Andromeda uses Weighted Multidimensional Scaling
(WMDS) to create an interactive DR that supports semantic
interaction for exploring and understanding 2D projection
spaces via model steering [3]. After an interaction, the model
learns new weights on the input dimensions that infer mean-
ing from the interaction and explain the information learned
by the projection. However, when a dataset does not have
interpretable dimensions, these explanations become mean-
ingless. What’s more, because a single pixel has an arbitrary
meaning across all images, weighting the same pixel in each
image does not have a uniform effect on all of the images.
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(@) Interaction Based on Pod Maturity

Visual Explanations

(d) Diseased

(b) Updated Projection

(e) Ready to Harvest

Ready-to-harvest
Late-to-harvest
Diseased

(c) Ground Truth of Updated Projection

(f) Late to Harvest

Fig. 1 Interactions to explore maturity level in edamame pod images. a shows user manipulations based on maturity level. b Shows the updated
projection while ¢ shows the ground truth maturity level. d—f Shows the explanations of important image features for each maturity level

Thus it does not make sense to directly project images from
pixel arrays.

We know from past research that deep neural networks
excel at extracting meaningful features from images and
embedding them into a new representation [4]. Classifiers
commonly use these embeddings, achieving high accuracy
which indicates that the embeddings must be well suited
for finding similarities between images. The question then
remains, how can we use these feature embeddings to cre-
ate more meaningful projections of image data and capture
human feedback?

In this paper, we present an interactive DR method,
built from Self et al.’s Andromeda, that supports seman-
tic interaction for exploring projections of image data. Our
method leverages the feature embeddings extracted from a
convolutional neural network to project image data to a low-
dimensional space using WMDS while supporting semantic
interaction to enable people to explore and update the projec-
tion space. Our method enables people to directly manipulate
the 2D locations of images to define new pairwise relation-
ships in the 2D space. Based on the changes induced by these
manipulations, the method learns new projection weights
that best respect the user-defined relationships. Using these
weights to re-project the images, people can observe the
impact of those relationships on the projection space. Each
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dimension now represents some feature of the images, rather
than an arbitrary pixel, but these dimensions are still not
directly interpretable. Increasing the weight of a feature
increases its importance in the projection but still does not
provide any insight into the information learned. Thus, while
updating the weights now has an inherent meaning, people
have no real understanding of this meaning. That brings us
to our second question: How can we translate the learned
weights back to the image space?

In addition to providing an interactive DR, our approach
provides explanations of features of importance in the 2D
space through the use of a weighted backpropagation algo-
rithm. We adapt a traditional visual backpropagation method
for generating saliency maps [5] to apply the feature weights
from the projection. Doing so creates saliency maps that
highlight the image features learned from the semantic inter-
action. Thus, we are able to push the information learned
from the interaction back through the network to the image
space, where people can interpret it.

Our method helps people explore multiple projections of
their image data through semantic interactions and explain
the effects of these interactions on the placement of images
through saliency maps. Figure 1 presents an example using
our method, with a full description in Sec. 5.1. We note that
our motivations for investigating 2D projection spaces stem
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from our desire to support human cognition and sensemaking
when working with image collections through dimensional-
ity reduction. In particular, we note that organizing images in
a 2D space based on similarities corresponds well with how
people naturally think and reason about visual information.
In contrast to regression models, our focus is not on pre-
dicting exact numerical values or fitting data to a particular
model, but rather on capturing and visualizing the inherent
relationships and structures within image data. Additionally,
the objective of 2D DR is not to perform clustering, as is
the case with interactive clustering methods, but rather to
reveal the continuous and frequently complex relationships
that exist between images. By representing images in a 2D
plot where distance reflects similarity, we provide an intu-
itive and approachable framework for individuals to explore
and interpret diverse visual data.

This paper extends the contributions of [6] to expand the
evaluation with new usage scenarios and a quantitative eval-
uation. The extended contributions of this paper include:

e An interactive-Al method for dimension reduction that
semi-automatically projects images based on visual
knowledge from both pre-trained neural models and
human feedback.

e An explainable-Al method for saliency mapping through
weighted backpropagation that explains important image
features.

e Four usage scenarios that illustrate real-world examples
of image exploration tasks supported by our method.

e A quantitative evaluation demonstrating our methods’
ability to organize image data according to interactive
feedback.

2 Related work

Our work draws elements from interactive dimensional-
ity reduction techniques, semantic interaction methods, and
explainability in deep learning. In this section, we start by
discussing related works from the interactive dimensionality
reduction literature. Next, we focus on semantic interac-
tion and its applications in sensemaking. Finally, we discuss
explainability techniques for deep-learning methods in the
context of image data.

2.1 Interactive dimensionality reduction

Dimensionality reduction techniques are commonly
employed to analyze and visualize high-dimensional data by
projecting itonto a 2D or 3D space [7]. Alone, DR algorithms
typically produce a static projection space with no means for
exploration or manipulation. Thus, many scholars sought to

develop interactive DR techniques capable of capturing user
feedback and subsequently modifying the projection.

Some interactive DR methods create a bi-directional
workflow where people can alter data in the high-dimensional
space to see the effect on the 2D location and vice versa [8,
9]. Other works explore the idea of backward (or inverse)
projections that allow people to select locations in the 2D
space and generate corresponding high-dimensional repre-
sentations [10, 11]. Eler et al.’s work specifically targets
image data, providing interactions for exploratory tasks, such
as zooming into specific projection regions, displacing points
to resolve overlapping, and displaying the nearest neighbors
of selected images [12].

Many works exist on interactively steering projections.
Several take the approach of requiring people to define con-
trol and organize control points, which are then used to
project a larger collection of data while maintaining local
structures around control points [13—15]. Others learn new
distance functions for MDS to update the projection to best
respect user manipulations [3, 16]. Fujiwara et al. provide
a visual analytics framework for comparative analysis, pro-
viding interactions to manipulate and update projections to
illustrate the similarities and differences between clusters of
points [17].

Our work expands on past work by specifically targeting
imaged data to provide both projection-steering interactions
and visual explanations of the 2D space. We extend Self et
al.’s Andromeda [3]. Andromeda allows people to directly
manipulate the 2D location of data points and updates the
projection model to incorporate human feedback into the
projection. We propose an extension to Andromeda that sup-
ports image data via deep-learning feature representations
and provides visual explanations of the important image fea-
tures, before and after human feedback.

2.2 Semantic interaction

Semantic interactions exploit the natural interactions in visu-
alizations to learn the intent of the user and then, based
on these interactions, update the underlying model and its
parameters [18]. In the context of sensemaking, semantic
interactions capture the analytical reasoning of the users [19],
and support analysts throughout the sensemaking process
[20].

Most semantic interaction systems work using a dimen-
sionality reduction model, similar to the interactive dimen-
sionality reduction methods described in the previous sec-
tion. Semantic interaction is a bi-directional pipeline [21]
and requires capturing the changes in the visualization and
turning them into changes to the model. In the dimension-
ality reduction case, this is usually done through the use of
an inverse transformation (e.g., inverse WMDS) [22]. There
are several models that can be used to solve the bi-directional
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transforms required to implement semantic interactions, such
as Observation-Level Interaction [23], Bayesian Visual Ana-
lytics [24], and Visual to Parametric Interaction [25].
Previous work has also shown how to integrate deep-
learning models with semantic interaction techniques. For
example, Krokos et al. [26] designed an interactive tool to
help humans label data points for semi-supervised learning
using a deep-learning model. Bian and North [27] developed
a semantic interaction model for text analytics integrating
traditional dimensionality reduction techniques with a neu-
ral network as its core component. Bian et al. [28] continued
the development of these semantic interaction models and
designed an explainable Al framework based on counterfac-
tuals that help users understand the generated projection.

2.3 Explainability in deep learning

Scholars have proposed several explainability methods for
convolutional neural network (CNN) models, the backbone
of most image-based deep-learning applications. Bojarski et
al. [5] proposed a visualization method that shows which
pixels of an input image contribute the most toward the pre-
dictions of a CNN model. In particular, their technique allows
debugging CNN-based systems by highlighting the regions
of the input image that have the highest influence on the out-
put of the model. Zeiler and Fergus [29] developed a novel
visualization technique that provides insight into the interme-
diate feature layers of a CNN in a classification task. Zhou
et al. [30] use a global average pooling layer to shed light
on how this layer enables CNN models to localize objects in
images. In particular, their approach generates a Class Acti-
vation Map (CAM) using global pooling. However, while
these explanation techniques are powerful, they are designed
for specific CNN-based models. To address this weakness,
researchers have proposed visual explanation techniques for
a large class of CNN-based models. For example, Selvaraju
et al. [31] generated CAMs based on gradient information
of target concepts (Grad-CAM). Grad-CAM provides fine-
grained explanations of the CNN predictions but suffers from
performance issues with multiple occurrences and single-
object images.

Despite the recent advances in explainable deep learn-
ing for image data, there is a dearth of studies exploiting
explainable deep-learning techniques for interactive DR in
the context of image analysis. Thus, our work seeks to fill this
gap and combine interactive DR for images with explainable
deep-learning techniques. In particular, we base our work on
the method of Bojarski et al. [5], as visual backpropagation
provides an efficient way to generate explanations of relevant
image features for the users by pushing the weights obtained
in the interactive DR loop through the backpropagation pro-
cess.
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3 Tasks

Before discussing the details of our method, we first must dis-
cuss the sensemaking tasks of someone using our tool. Pirolli
and Card described the sensemaking process as having two
primary loops: the foraging loop and the sensemaking loop
[32]. The foraging loop focuses on searching and filtering
information and extracting evidence. The sensemaking loop
then uses this information to iteratively construct representa-
tional schemas as well as generate and test hypotheses about
the data.

In the context of image data, simply looking at every
image does not provide sufficient information to make sense
of the data. The foraging loop requires filtering and extract-
ing sets of images relevant to the task at hand. Then, those
images must be organized into a schema that provides a
structured representation for consuming the image data and
testing hypotheses. The process of generating and refining the
schema typically requires several iterations of foraging for
information under the current schema, updating the schema
based on the new information, and evaluating how the schema
fits the task at hand to determine if it requires further refine-
ment.

Our method supports this schematization step through iter-
ative exploration of the images and refinement of the 2D
representation to reflect prior knowledge of the analysis task.
Through discussions with collaborators in the plant sciences,
we identified the following tasks to support this iterative pro-
cess: (1) define custom similarities based on prior knowledge
and (2) link human- and machine-defined similarities

These tasks create a synergy between the machine and the
human where they work together as a team, teaching each
other what they have independently learned from the data.
In the end, we create an analysis pipeline where the human
perceives the data, conveys their knowledge to the machine,
and the machine then re-organizes the data based on this
information, while providing explanations of its reasoning.
The remainder of this section discusses these tasks in greater
detail.

3.1 Define custom similarities based on prior
knowledge

When analyzing data, people typically have some prior
knowledge about the data, such as what categories of or
similarities between images they expect to exist within the
data. For example, in a set of edamame pod images, the ana-
lyst may expect images of healthy pods and diseased pods.
Static dimension reduction plots, may or may not adequately
reflect this prior knowledge. In the previous example, the
person analyzing may want to inspect healthy vs diseased
pods, but the model may not naturally recognize these differ-
ences. Furthermore, static projections do not enable people to
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explore different projections defined under different guide-
lines. To enable hypothesis testing, people must be able to
steer the projection to define similarities in the data in a way
that reflects their prior knowledge. With our method, people
directly manipulate the 2D location of images to define new
relationships within the data that the model then learns and
uses to re-project the images accordingly.

3.2 Link human-defined and machine-defined
similarities

The previous task focuses on teaching the projection model
to incorporate human knowledge. However, while it helps
the model learn human knowledge, it does not help peo-
ple understand the model’s knowledge. People need ways
to inspect the image features most important to the 2D pro-
jection. This helps them not only understand the 2D space
but also validate the model’s perception of their interaction
and potentially identify other image similarities/differences
beyond the knowledge they intended to teach the model. Our
method provides saliency maps that illustrate the features of
the image that the projection most heavily used to place the
image. Viewing the explanations of multiple images provides
insight into why the model placed them near or far from each
other and provides a means for understanding the 2D space.

4 Workflow and methodology

In this section, we describe the expected user workflow and
interactions, as well as the underlying methodology.! Fig-
ure 2 gives an overview of the workflow while Fig. I presents
an example of using this workflow.

4.1 Initial state

Upon loading the data, our method extracts the neural embed-
dings of the images to project them into the 2D space. It then
uses Weighted Multidimensional Scaling (WMDS) to project
the features into 2D. For the initial projection, our method
assumes no prior information and thus treats all features in
the neural embedding with equal importance. The resulting
plot provides the initial view into the similarities of the data
and serves as the starting point for the exploratory analysis.
We chose WMDS because it uses pairwise similarities as the
input for projection and thus changes in the 2D similarities
conceptually map directly back to the input space.

Feature extraction Feature extraction is an important
technique in computer vision widely used for tasks such
as object detection and image classification [33]. Existing

! The implementation of our method can be found at https://github.
com/infovis-vt/Andromeda_IMG.

feature-extraction methods for image data include traditional
approaches such as Harris Corner Detection [34] and Scale-
Invariant Feature Transform (SIFT) [35]. Recently, deep-
learning models have become popular for feature extraction
in images [36]. In particular, Convolutional Neural Networks
(CNN) have shown great power in image-related tasks [37].
Thus, using CNNs has become the standard in feature extrac-
tion [38].

Furthermore, the rise of transfer learning enables
researchers to utilize the power of pre-trained models instead
of training a deep neural network from scratch [39]. Our
method uses the pre-trained ResNet18 [40] as a fixed feature
extractor to generate feature vectors from images.

Given an image dataset D, we forward propagate the
images through the network with the fully connected layer
removed. The final representations are denoted as:

X = ReSNEIpre—trained (D) (] )

The feature space X is a 512-dimensional space used to
represent the images. Each x; is the output of applying aver-
age pooling to the final feature map of the network. We use
X as the input to the interactive dimension reduction loop.

Weighted Multidimensional Scaling Using the extracted
image features (X') as input, we perform MDS on a weighted
data space (WMDS) to project the images to 2D, using the
following function:

¥ = arg min \/ S @Gy —duw, i )R @)

Y1s---Yn i<j<N

where N is the number of points in the dataset, dz. (y;, y;)
is the low-dimensional distance between y; and y;, and
dg(w, x;,x;) is the weighted high-dimensional distance
between the feature representations x; and x;, given the
dimension weights w. We calculate dy by first weighting
the data space using w (i.e., X * w) and then calculating the
pairwise distances in the weighted data space. For the ini-
tial projection, we initialize w with equal weights for every
dimension, relying solely on the raw image features to orga-
nize the images.

4.2 Interaction and inverse dimension reduction

From the initial state, people can directly manipulate the pro-
jection plot, dragging points into new positions in the 2D
space (as shown in Fig. 1a). Dragging points to new positions
defines new pairwise relationships to teach the projection
model. For example, in Fig. 1a, an analyst projects a collec-
tion of edamame pods that contain three phenotypes of pods:
ready to harvest, late to harvest, and diseased. However, the
initial projection of our pods, the projection does not differ-
entiate these phenotypes. By selecting and dragging a few
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Fig. 2 An overview of our workflow. First, we extract image features
using a deep-learning feature extractor which we then pass to an inter-
active DR method (WMDS) that facilitates semantic interactions. The
dark blue dotted arrows signify the human interaction loop. After inter-
actions, we pass the newly defined relationships to the inverse DR where

representative images of each type to opposing positions, the
analyst indicates to the machine that those images are dissim-
ilar and should be organized accordingly. Once the analyst
completes their interaction, our method uses these relation-
ships to optimize the projection weights to create a projection
layout that best respects the defined relationships.

Inverse dimension reduction To facilitate interactive
dimension reduction, we use inverse WMDS (WMDS ™) to
update the projection after semantic interactions, as origi-
nally described in Andromeda [3].

After the analyst re-positions a subset of the points, y*,
we perform WMDS™! to calculate new weights optimal
for maintaining the specified relationships, thus capturing
human feedback. WMDS ™! uses the following equation to
update the weights:

(> @y yj) —du(w, x;, x;))?
i<j<N

3

w = arg min
Wi, Wy

> du(w, xi,xj)?
i<j<N

This equation produces a vector of dimension weights that
best respects the 2D pairwise similarities specified through
the interactions. We normalize the weight vector to sum to
1, so as to normalize the HD distances to a roughly constant-
sized space. We then re-project the images using equation 2
with the updated weights to create a layout that incorporates
the analyst’s feedback.

4.3 Visual explanations

To fully enable interactive projections, we must also enable
people to inspect the information learned from their interac-
tion. Our method provides visual explanations in the form of
saliency maps to provide visual feedback and explanations of
the information learned by the projection. The saliency maps
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highlight the important features in a given image, shown in
Fig. 1d—f, such that the brighter pixels correspond to features
of greater importance.

In the initial view, before semantic interactions, these
explanations indicate the features of importance identified by
the feature extractor that the projection model then uses to
place the images. After an interaction, the optimized feature
weights are pushed backwards through the feature extractor,
using weighted backpropagation (described below), to gener-
ate new saliency maps that emphasize the features learned by
the projection model. By inspecting the differences between
the original saliency map and the post-interaction map, peo-
ple can understand what features the projection learned from
their interaction. This feedback enables people to better com-
plete their tasks and refine their sensemaking schemas.

Weighted visual backpropagation Figure 3 illustrates
our weighted visual backpropagation method. We base our
proposed method on the visual backpropagation method pro-
posed by Bojarski et al. [5]. This method computes the actual
contribution of neurons to the feature representation, making
the backpropagation fast and efficient. We make this method
projection-aware by applying the projection weights to the
backpropagation.

To implement our method, we utilize the feature maps
after each ReLU layer. For the feature map of the last convo-
lutional layer, we conduct channel-wise multiplication with
the weights w obtained from the interactive DR loop to back-
propagate the user’s intent. We then average the other feature
maps to get a single feature map per layer. The deepest sin-
gle feature map, highlighted in green in Fig. 3, is deconvolved
with the same filter size and stride as the convolutional layer
immediately preceding it. This scales the feature map to
match the size of the map in the previous layer. Then we
pointwise multiply the deconvolved feature map by the aver-
aged single feature map of the previous layer. This process
is repeated until we reach the input image.
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We keep our notation consistent with Bojarski et al. [5].
Note, we will only describe our modification to their method.
For full details, please refer to Bojarski et al. Consider a
convolutional neural network A/ with n convolutional layers.
Let y (i) denote the value of pixel i of the input image and
v represent a neuron. e represents an edge from some other
neuron V' to v and a, denotes the activation of v (a. = a(v)).
‘P denotes a family of paths. The contribution of the input
pixel i, calculated by the original Visual Backpropagation
method, is defined as:

Oppi)=cxy@ > []a @)

PeP ecP

For our method, we enable users to adjust the weights for
the final network embeddings, which is the feature map of
the last convolutional layer. To back-propagate the weighted
feature map, we conduct channel-wise multiplication for the
last feature map with weights gained from the interactive DR
loop. We denote e, as the edge that connects nodes from layer
(t — 1) to layer t. Let k denote the kernels for each layer. The
contribution of the input pixel i calculated by our Weighted
Visual Backpropagation method is defined as

Ovep () = cx () Y [ ] ae, Q)

PeP ecP

where

a(v)

a(v) * wy

ift #n,
“ ift = n.

and wy is the weight from the inverse projection corre-
sponding to channel k of the feature map in the final layer.

5 Usage scenarios

In this section, we present two real-world usage scenarios to
illustrate the utility of our method on image sorting tasks.

5.1 Edamame pods

We developed this usage scenario with collaborators in the
plant sciences department [41]. Our collaborators identified
the need for incorporating human perception into model
development for identifying plant features. One use case
of this idea stems from sorting images of edamame pods.
Initially, they wanted to organize images of edamame pods
based on maturity level. However, when exploring the images
they also discovered that the pods contained varying numbers
of seeds, which often correlates to the consumers’ perception
of quality. They envisioned that a method like ours would help
them re-organize the images based on this newly identified
feature and allow them to reuse the original model. In the
remainder of this section, we discuss two scenarios for orga-
nizing images of edamame pods. For our example, we use a
subset of their edamame pod dataset containing 60 images,
with 20 images per maturity stage.

5.1.1 Maturity stage

The maturity stage of each pod is defined as either dis-
eased, late-to-harvest, or ready-to-harvest. Here, we test
how well our method can organize the images according to
these phenotypes from human feedback and whether the fea-
tures captured by the model to separate the images relate
to the underlying phenotypes, illustrated in Fig. 1. First, we
project the edamame pods to 2D. Then, we observe the
visual phenotypes for maturity and interactively drag a sub-
set of pods (highlighted in green) in order to group them
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Projection Plots

(@) Interaction Based on Number of Seeds

Visual Explanations

(d) One-seed (e) Two-seed

Fig. 4 Interactions to explore images based on the number of seeds.
a shows the interaction based on seed count. b Shows the updated
projection while ¢ shows the ground truth seed count. d—f Shows the

into three clusters according to the desired phenotype cate-
gories, shown in Fig. 1a. We hypothesized that, through this
interaction, the underlying model will learn new weights for
the feature space that satisfy the newly defined projection
and properly capture the user’s mental model of pod matu-
rity.

Figure 1b shows the updated projection (generated after
approximately 25s), which produced three main clusters of
pods according to their maturity stage. Figure 1¢ shows the
ground truth of the images. This indicates that the desired
phenotypes were effectively captured by the weighted fea-
tures and represented in the updated model.

The explainable feature visualizations of specific pods
depict the most important visual features learned by the
interactive model. In Fig. 1d we see that one of the impor-
tant visual features learned by the model to determine
the disease phenotype is a salient discolored spot. Sim-
ilarly, in Fig.le, f, the model focuses on image areas
correlated to important features of each pod. This pro-
vides insight into that parts of the pod are important for
visually discerning the maturity stage. Furthermore, these
results provide a link between human perception and machine
learning.
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(c) Ground Truth of Updated Projection

(f) Three-seed (9) Misprojected

explanations of important image features for each seed count while g
shows the explanations of two mis-projected images

5.1.2 Number of seeds

For the same pod dataset, we also want to explore a different
visual phenotype: the number of seeds per pod. However,
the images were not originally collected to determine the
number of seeds. Thus, the number of seeds is a novel visual
feature that can be observed directly by the end users but is
not initially used to cluster images in the default projection.
As before, the images of edamame pods are displayed in
the 2D plot. We then interactively drag pods (highlighted
in green) to group them into three clusters according to the
number of seeds (one, two, or three), as shown in Fig.4a.
We hypothesize that by dragging a subset of the images, the
underlying model will learn the weights for the feature spaces
that satisfy the user-defined projection based on the number
of seeds.

Figure 4b shows the updated projection. We find that the
projection model captures the “number of seeds” phenotype.
Figure4c shows the ground truth of the updated projec-
tion, instead of well-separated groups, the updated projection
shows a linear relationship. We notice that there are two
“three-seed" pods projected closer to the “two-seed" pods.
To learn more about why these two pods are mis-projected,
we explore the visual feature explanations for each group.
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Image Before After

¢) Updated Projection

Before After

Image

(d) Explanations for two images with both horses and humans, before and after the interactions.

Before

Before

(e) Explanations for two images with only horses, before and after the interactions.

Fig. 5 Usage scenario on the animals dataset: a, b, ¢ show the pro-
cess for exploratory analysis on a small subset of images. In b the user
drags the “human and horse” images apart from the “horse" images
to emphasize the “human” object. In the updated projection ¢ the ani-
mals are projected near the bottom and images containing “humans” are
clustered at the top (circled in red). d shows the saliency maps before

Figure4d, e, f shows the saliency map for the three groups
accordingly. We find that the most important CNN features
mainly capture the overall shape of the pod, as well as the
position and the “raised” area of the seeds to differentiate
pods with different numbers of seeds. Yet for those two mis-
projected pods, they are either dominated by the disease spot
or do not have the obvious shape of three seeded pods, as
shown by Fig.4g.

5.1.3 Open-mouth animals
5.2 Animals

In this scenario, we use a dataset of images of animals from
Kaggle [42]. This dataset consists of 5400 animal images in
90 different classes. For the task, we sampled a subset of this

and after the interactions for two images with humans and horses. The
“after” saliency maps show greater levels of attention on the “human”
object. In contrast, e shows the saliency maps for two images with only
horses where the horse objects remain emphasized after the interaction

data, using only five classes of animals—horse, goose, shark,
snake, and eagle—with five or six images per class. Figure 5
illustrates this usage scenario.

5.2.1 Human objects

After loading the data, our method creates the initial projec-
tion of the images, shown in Fig.5a. The initial projection
organizes the images such that animals of the same class
are placed close together. However, after inspecting the pro-
jection we notice that some of the images contain both
humans and animals. After this realization, we decide we
want to inspect images of animals and humans separately
from images only containing animals. We want to teach the
underlying model to capture the concept of “human” rather
than just grouping the images based on the animals. To do
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(e) Explanations for a close-mouthed shark and snake.

Fig.6 Usage scenario on the animals dataset: a, b, ¢ show the process
for exploratory analysis on a small subset of images. In b the user drags
the “animal has mouth open” images apart from the “animal has mouth
closed" images in the same animal category to emphasize the “mouth”
object. In the updated projection ¢ the animals that have their mouths
open are clustered at the top (circled in red). d Shows the saliency

so, we drag the “human and horse” images apart from the
“single horse” images as shown in Fig.5b. After this, the
underlying model learns the current user-defined layout and
updates the entire projection based on the learned weights.
Figure 5S¢ shows the updated projection. In this projection,
the images containing humans are projected together, while
all the other animal images are re-projected accordingly, with
animals of the same still projected in close proximity. Thus,
all the pure animal images are separated from the images
containing humans.

After teaching the projection to organize the images based
on whether they contain a human, we want to inspect what
features the projection used to place images and if the projec-
tion actually picked up on the human features in the image.
Visual explanation method and inspect the saliency maps
are used before and after the update, shown in Fig.5d, e.
To illustrate this, we selected two of the images contain-
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maps before and after the interactions for an open-mouthed shark and
snake. The “after” saliency maps show a greater emphasis on the snakes’
mouths and a reduced emphasis on the sharks’ bodies (focusing on the
open mouth), thus capturing the “open mouth” feature. e Shows the
saliency maps for a close-mouthed shark and snake, with the attention
largely unchanged by the interaction

ing humans and horses, shown in Fig.5d. Before the user
manipulates images, the underlying model projected images
mainly based on animal content in the images as shown in
the “Before” maps of Fig.5d. Thus, the horse images are
closer to each other in the projection space, as the machine
mostly focuses on the horse object in the images. After the
user manipulates the projection, the machine-learning model
puts more attention on the humans as shown in the “after”
maps of Fig.5d. To compare, we inspect the explanations
for two horse images that do not contain humans, shown in
Fig. 5e. We see that, while the emphasis changes somewhat,
it still focuses on the entire horse object. Using the visual
explanations, we clearly see that the projection adequately
inferred the meaning behind the interactions.

For the same animal dataset, we also found another visual
feature to explore: whether the animal’s mouth is open or not.
Some of the animals in the images have their mouths open and
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we want the projection to re-organize the images to separate
the open-mouthed animals from the others. To convey this
information, we drag a select set of open-mouthed animals
apart from close-mouthed animals. For example, as shown in
Fig. 6b, we pick two images from the snake, shark, and eagle
groups. For each group, one of the images has the mouth open
and the other has the mouth closed. The original projection,
shown in Fig.6a, organizes images so that the animals of
the same type are projected together. We expect that after
learning and re-projection, the open-mouthed animals and
close-mouthed animals will be apart from each other and
the model will increase the attention on the animal’s mouths
rather than the entire animal. Figure 6¢ shows the updated
projection and we can see that all open-mouthed animals are
grouped together, two new open-mouth sharks that we did not
select to drag during the learning phase are also projected
close to the other open-mouth animals, indicating that the
projection learned our intent.

To verify that the model actually learned the intended
information, we generate the saliency maps before and after
the update to inspect the learned features, shown in 6d, e.
We select two images of open-mouthed animals to inspect,
one that we used in our interaction and one that the projection
identified from our interaction, shown in 6d. Before the inter-
action, the underlying model projected images based on the
entire animal in the images (the “before” maps in 6d). After
the interaction, the model puts less attention on the shark’s
body and more attention on the snake’s mouth as shown in
the “after” maps in 6d, indicating the projection learned our
intent and identified the intended features during the learning
process. To compare, we also inspect the explanations for a
close-mouthed shark and snake, as shown in Fig. 6e. We see
that the interaction largely does not change the emphasized
features of the close-mouthed animals.

6 Quantitative analysis

In addition to the use cases shown before, we perform a quan-
titative analysis to assess our method’s ability to organize the
images based on human feedback and evaluate the number
of interactions necessary to produce a desirable organization.
Ultimately, our system aims to steer projections based on
analysts’ prior knowledge. To evaluate our method’s effec-
tiveness at incorporating human feedback, we focus on the
natural task of guiding the projection to separate images by
distinct classes. We evaluate our method on two versions of
this task: (1) organizing images by a distinct visual feature
from a random projection and (2) shifting the projection from
a layout using based on one feature to a layout using a differ-
ent feature. Additionally, we evaluate how many interactions
per image class are necessary to reach a well-organized lay-
out. To measure the quality of the layout, we calculate an

adjusted Silhouette score [43] of the clusters in the resulting
projection. The remainder of this section describes the details
of the evaluation.

6.1 Method

Our experimental design stems from the simulation experi-
ments in [27]. To evaluate our method, we create a simulation
engine that simulates semantic interactions. The interactions
organize a subset of the images such that images of the same
class are placed close together and images of different classes
are far apart. From this organization, we learn new projec-
tion weights, use those weights to organize the whole set of
images, and then evaluate the clustering in the layout. We
run this simulation many times, with varying numbers of
simulated interactions per class to evaluate the number of
interactions necessary to reach a well-clustered layout.

6.1.1 Data

In this experiment, we use two datasets: images of animals
[42] and images of edamame pods. We use the animal images
for the first task, organizing images based on a distinct visual
feature from a random layout. This dataset contains 300
images with five types of animal (horse, goose, eagle, shark,
snake), giving 60 images per category. Using this dataset, the
simulated analyst aims to guide the projection to identify and
separate the images by the type of animal in the image. We
use the edamame pods for the second task, to evaluate how
well our method can re-organize images by a second feature.
The pods are labeled with two features: the number of seeds
in the pod and the maturity of the pod. With this dataset, we
initially organize the pods by the number of seeds in each
pod and simulate interactions to re-organize them by their
maturity, measuring the quality of the resulting projection.

6.1.2 Simulation engine

The simulation engine consists of two main components: the
interaction simulator and the layout evaluator. The simulation
process consists of the following steps: (1) project the images
using WMDS to create an initial layout of the data, (2) use
the interaction simulator to select a subset of size n from
each class and fully organize them into clusters (Fig. 7a), (3)
learn new weights using WMDS™ 1 that respect the simulated
interactions and project the whole dataset using those weights
(Fig.7b, ¢), and last, (4) use the layout evaluator to measure
the performance of the resulting layout. Steps (1) and (3)
are described above in Sect.4, while steps (2) and (4) are
discussed in more detail below. We repeat this process many
times for different numbers of interactions per class (different
values of n).
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Fig. 7 Example of the simulation process. In a the analyst organizes
a sample of images from each relevant label and our method learns
new weights based on this layout. b Shows the projection of the full
dataset using the learned weights, generalizing the layout based on the

Interaction simulator For each semantic interaction, the
simulator randomly selects n samples from each image class.
It then generates the pairwise distance matrix using the fol-
lowing equation, where x; and x; are two of the randomly
selected images:

0  if x; and x; are from the same class

i = sl = V2 otherwise

With this equation, the simulated analyst places images
of the same class directly on top of one another to show
the model that they should be placed together. In contrast, it
places images of different classes sufficiently far apart (v/2)
to teach the model that those images are dissimilar from
one another. Figure7a provides an example of the seman-
tic interaction that the interaction simulator is mimicking.
After simulating the interactions, the simulation engine uses
our method to learn new weights that account for the rela-
tionships defined by the interactions and projects the entire
dataset using these weights.

Layout evaluator To measure how effectively our method
captures the simulated analyst’s feedback, we calculate the
adjusted Silhouette score of classes in the resulting projec-
tion [43]. The Silhouette score evaluates a clustering on two
bases: cohesiveness and separation. The cohesiveness aims
to minimize the separation within a given cluster while the
separation aims to maximize the distance to the nearest clus-
ters. It returns a value from — 1 to 1, where values near zero
indicate overlapping clusters, negative values indicate mis-
assigned data and a positive score indicates the cohesiveness
and separation of the clusters.

However, because our goal is to create a well-organized
dimension reduction based on human feedback rather than
a succinct clustering, we do not prioritize compact, highly
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user’s interactions. ¢ Shows the performance of the resulting layout with
respect to the ground truth of the dataset. The updated projection has a
Silhouette score of 0.455

separated clusters as valuable information may be con-
tained in the spread of clusters. For example, in Sec. 5.1,
the first phenotype that we teach the DR (maturity stage),
the “diseased” phenotype spans both “ready-to-harvest” and
“late-to-harvest” as well. Thus, while the pods have distinct
classes, the spread of the clusters still contains useful infor-
mation. s aresult, the ideal Silhouette score would fall around
0.5, rather than 1. Conceptually, this would prioritize layouts
where, on average, points are approximately twice as far from
the points in the nearest class as they are from the points in
their own class. To accommodate this, we multiply the Sil-
houette score by two, such that one becomes the ideal score
for our DR, values less than one are too diffused, and val-
ues greater than one are too clustered. Figure 7c provides an
example of a well-organized layout with an adjusted Silhou-
ette score of 0.91.

6.2 Results

Task 1: Organize by distinct visual feature Figure 8 shows
a plot of the Silhouette score against the number of points
moved in each category. From this plot, we see that as we
increase the number of points moved in each class our method
steadily increases in its ability to organize the points. While
the performance continues to increase, we see that after inter-
acting with around five to ten points per category, the benefits
of moving more points become marginal. Figure 7b, ¢ shows
an example layout after a user moves five points per class. We
can see that by moving relatively few points from each class
to define similarities in the dataset, our method creates a lay-
out, with an adjusted Silhouette score of 0.91, that respects
these relationships and effectively applies them to the greater
dataset.
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Fig. 8 The Silhouette score of the projection layout over the number
of control points moved per category for the first task, organizing by a
distinct visual feature
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Fig. 9 The adjusted Silhouette score of the projection layout over the
number of control points moved per category for the second task, re-
organizing by a second visual feature

Task 2: Re-organize by a second visual feature Our sec-
ond task focuses on re-organizing our DR layout based on a
second distinct visual feature. For this example, we use the
edamame pod dataset. We initially organize the pods based
on the number of seeds in each pod. A natural follow-up
task is to re-organize based on a different feature, namely
the maturity stage of the pods. Thus, we evaluate how many
interactions it takes to move between two DR layouts orga-
nized by different visual features. Figure 9 shows a plot of
the adjusted Silhouette score for each visual feature against
the number of points moved in each category. We see that
our method quickly picks up on the new feature and begins
adjusting the layout accordingly.

7 Discussion

General framework for analysis using deep-learning features
One of the central problems with using deep-learning fea-
ture representations in data analysis is the loss of access to
the original data features. Typically, people must sacrifice

analysis transparency for performance. However, our method
presents a framework in which we maintain access to the orig-
inal data features by leveraging the underlying deep-learning
model to create explanations from the underlying data fea-
tures. Through the use of weighted backpropagation, we push
the information learned by the projection model back through
the neural network to generate explanations relative to the
underlying data features. In doing so, we take a step toward
solving the “two black boxes” problem, as defined by Wen-
skovitch and North [44]. The “two black boxes” problem
identifies both the deep-learning algorithm and the human
cognitive process as black boxes that impede the learning pro-
cess. In our method, semantic interactions with the projection
allow people to express some of their cognitive processes to
the machine. In return, the model presents explanations that
illustrate how it uses the provided information. This creates a
synergy between the machine and the human and facilitates
amore complete analysis experience. This framework can be
generally applied to analytics methods using deep-learning
representations of data.

Feature representation choice In our method, we use
ResNetl8 to extract image features. However, alternative
methods for feature extraction could be used. Bian et al.
explored additional methods for feature extraction, including
color histogram and Scale-Invariant Feature Transform [45].
We explored these methods as well but found that feature
representations from convolutional neural networks provide
the most meaningful projections and explanations. Addition-
ally, while we chose to use ResNet 18, our method supports
swapping in other neural network feature extractors, includ-
ing those designed for specific tasks and datasets. This allows
people to further customize projections of their data for the
given analysis task. Additionally, our method can facilitate
the comparison of different feature representations to identify
the one most appropriate for a given task.

Furthermore, we note that the scope of our research con-
tributions is focused on demonstrating the effectiveness of
our interactive DR method for images, rather than compar-
ing or evaluating our method against different image models.
ResNet was chosen to demonstrate the capabilities of our
interactive DR strategy and to serve as a concrete example of
the application of our interactive DR model. While it is pos-
sible that other image models could influence the results,
our emphasis lies in the novel aspects of our interactive
DR approach, which enables users to explore and manipu-
late the 2D projection space, obtain visual explanations, and
investigate complex visual relationships in image data. By
integrating both human-mental models and pre-trained deep
neural models, our method provides a novel perspective for
understanding and interacting with image collections.

Other methods for explanation Our method uses weighted
backpropagation to create explanations of the effects of
semantic interactions. However, this method is only one can-
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didate for creating explanations of interactions. There exist
other methods for generating feature explanations that we
can adapt to our method. For example, we also adapted Grad-
CAM to consider the weights from the projection model to
generate explanations [31]. We found that Grad-CAM excels
when images contain multiple entities; however, it falls flat
when searching for specific image features. As our method
benefits from finer-grained explanations, Grad-CAM was
not a suitable method. Adapting other methods for creating
model explanations remains to be explored in future work.

Retaining human feedback While our method helps peo-
ple explore many organizations of images and incrementally
build a mental model of the underlying data, it has lim-
ited knowledge retention for iteratively fine-tuning a single
model. To overcome this, we need to explore methods
for incorporating learned information back into the feature
extractor to update the representation to retain human feed-
back throughout the image sorting process, similar to Bian
et al.’s method for textual data [27]. The drawback to this
is that it trades fine-tuning of a single model for the abil-
ity to easily change the basis of the organization. If the user
specifies contradicting information over the course of sev-
eral iterations of interaction, it may confuse the model and
produce a less organized layout of the images. This method
and its limits remain to be explored in future work.

Scalability of explanations One outstanding challenge in
designing explanations for collections of images is scalabil-
ity. Methods such as ours require people to inspect individual
images, to understand the important features. In the presence
of large datasets, this becomes cumbersome and impractical.
Currently, the only solution offered by our method is to plot
the explanations themselves rather than the images, enabling
people to consume them more quickly. This, however, still
has drawbacks for larger datasets due to the occlusion of plot-
ted images and the time required to visually scan through
many explanations. The natural solution would be to create
summary explanations for sets of images. However, images
present a unique challenge in that it is non-trivial to summa-
rize a set of images. An additional solution could be to design
metrics that suggest important explanations, e.g., explana-
tions that change substantially after an interaction, to help
reduce the amount of explanations to inspect. Future work
is needed to explore how to support scalable explanations of
images.

8 Conclusion

In this paper, we presented an interactive dimension reduc-
tion method for exploring image data using deep-learning
representations of images. Our method provides seman-
tic interactions that allow people to incorporate their prior
knowledge into the projection model. It uses custom-defined
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relationships to learn new projection weights optimal for
respecting these relationships. Additionally, our method
provides visual explanations of the effects of semantic inter-
actions on the placement of images in the projection. These
explanations illustrate the image features most important for
projecting the images and illustrate the effects of interactions.
We provide a real-world usage scenario and quantitative anal-
ysis to demonstrate the method’s effectiveness at organizing
data from human-defined similarities. Overall, we found that
our method was able to capture human feedback and incor-
porate it into the model. Our visual explanations help bridge
the gap between the feature space and the original images
to illustrate the knowledge learned by the model, creating
a synergy between humans and machines that facilitates a
more complete analysis experience.
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