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• Study provides a comprehensive frame-
work for assessing geochemical back-
grounds in hyper-arid, mining-intensive
regions.

• Robust multivariate analysis identified
four main factors controlling soil
geochemistry in Antofagasta.

• Three distinct geochemical clusters
reflect the interplay of natural and po-
tential anthropogenic influences.

• Multiple robust statistical methods
established element-specific background
concentrations for each cluster.

• Geostatistical analysis revealed spatial
patterns linked to geology and potential
anthropogenic activities.
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A B S T R A C T

This study investigates the geochemical background and factors influencing the variability of 19 environmentally
relevant elements in the soils of Antofagasta, Chile, a region known for its extensive mining activities. Employing
robust multivariate statistical techniques on a dataset of 94 soil samples, we identified four main factors
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Mining industries
Arid zone
Environmental risks
Cluster analysis
Geostatistics

explaining 70% of the total variance in elemental concentrations. These four factors reflect the influence of
Jurassic volcanic rocks, intrusive rocks, marine sediments, and mafic to intermediate intrusive rocks. Cluster
analysis revealed three distinct geochemical populations, each reflecting a unique combination of natural and
anthropogenic influences. We established background concentrations for each element within these clusters
using robust statistical methods. Geostatistical analysis, employing inverse distance weighted interpolation,
produced factor distribution maps that, when integrated with geological data, provided insights into lithological
and anthropogenic influences on soil geochemistry. Our findings highlight the complex interplay between nat-
ural geological processes, the region’s unique arid climate, and anthropogenic activities in shaping the
geochemical landscape of Antofagasta. This study contributes to the understanding of geochemical backgrounds
in mining-intensive, arid regions and provides a methodological framework applicable to similar environments
worldwide.

1. Introduction

The mining industry has been a key driver of economic growth in
Chile, with the country being a global leader in the production of Ag, Au,
B, Cu, I, Li, Mo, and Re (Lam et al., 2016; Smart, 2020). The Antofagasta
region, located in the northern part of Chile, is particularly known for its
extensive copper mining activities. While the mining sector has signifi-
cantly contributed to the economic development of the region, it has
also raised concerns about its environmental impact, especially on soil
quality (Castro and Sánchez, 2003; Lagos and Blanco, 2010; Lam et al.,
2018).

The city of Antofagasta is located in the Cordillera de la Costa of the
Antofagasta Region. This area corresponds to one of the most arid parts
of the Atacama Desert. The average precipitation ranges between 0.5
and 8 mm/year, and can even go without precipitation for 4 or 5
consecutive years and only a few sporadic short storms. Temperatures
on the coast are mild and stable most of the year due to the softening
effect of the sea. The average monthly values range between 13.5 ◦C and
20.1 ◦C in the city of Antofagasta (DGA, 2009). The extreme dryness of
the Cordillera de la Costa of the Antofagasta Region is due to the per-
manent anticyclone conditions on the coasts of northern Chile and the
cold Humboldt current (Klohn, 1972; Rutllant, 1985). On the other
hand, the Andes Mountains are an impressive mountain barrier that
prevents the arrival of humidity from the Atlantic Ocean through the
Amazon Basin (Garreaud, 2009). Part of this humidity reaches the
western slope of the Andes in the summer months, in the so-called
“Altiplano Winter”, but not the Central Depression.

The Antofagasta region, characterized by its hyperarid to arid
climate, is notorious for its anomalous concentrations of As and other
elements present in its water, soil, and rock (Pérez-Carrera and
Fernández Cirelli, 2010). These geochemical anomalies are the result of
geological processes that have given rise to important mineral deposits
in the area (Oyarzun et al., 2006). The soils of Antofagasta show high
contents of metals such as Cu, Mo, As, and other elements associated
with mineralization (Lam Esquenazi et al., 2019). The high natural
geochemical concentrations found in this region strongly contrast with
the background geochemical levels of other non-mining regions in the
country. Therefore, Antofagasta is considered a highly anomalous region
from the perspective of environmental geochemistry. The detailed study
of these anomalies is crucial for differentiating the natural geochemistry
from possible anthropogenic impacts on the soils (Oyarzun et al., 2006;
Tapia et al., 2018).

The intensive mining operations in this region have led to an
increased risk of soil contamination, which can have detrimental effects
on the ecosystem and human health (Castro and Sánchez, 2003; Lam
et al., 2018). To assess the extent of soil contamination and develop
effective management strategies, it is crucial to establish the geochem-
ical background values of metals and metalloids in the region (Lam
et al., 2020).

Geochemical background values play a crucial role in environmental
assessments, particularly in distinguishing between natural and
anthropogenic sources of elements in the environment. Determining
background concentrations of various metals in northern Chile is

important due to the region’s unique hyper-arid conditions, particularly
in the Atacama Desert. The scarcity of precipitation and limited natural
water sources results in metal concentrations in soils behaving differ-
ently than in more temperate regions (Arens et al., 2021). Unlike areas
with regular rainfall and runoff, where metals can be redistributed over
time, the Atacama’s hyper-arid core experiences minimal change,
leading to potential accumulation of metals on the surface over extended
periods. Establishing background levels in such an environment requires
accounting for high variability across different locations, as the
geochemistry of one site may not accurately represent another. This
complexity is further compounded by wind-driven metal transport,
which can impact local measurements.

The Antofagasta region, part of the Atacama Desert, is one of the
driest places on Earth. Its hyper-arid conditions lead to minimal natural
weathering processes and slower dispersal of contaminants. Over a
century of mining activity has resulted in large volumes of waste con-
taining potentially toxic elements (PTEs) such as arsenic, copper, lead,
zinc, and cadmium (Reyes et al., 2020, 2021). These contaminants, often
present in tailings and abandoned sites, have accumulated in sur-
rounding soils. Differentiating between anthropogenic contamination
and naturally occurring (geogenic) metal concentrations poses a sig-
nificant challenge. The reduced precipitation in the region makes it
difficult to establish a clear baseline, as natural geochemical processes
that would otherwise distribute or dilute these metals are minimal. This
leads to heightened concerns over human exposure, particularly in areas
with expanding urban development (Reyes et al., 2020; Lam et al.,
2023).

The slow breakdown of waste material in this arid environment
contributes to prolonged exposure risks, complicating efforts to assess
and remediate polluted sites (Tyler, 2020). Establishing accurate back-
ground levels is important for identifying the extent of contamination
and developing regulatory standards to protect human health and the
environment. The presence of communities living near contaminated
soils further amplifies these environmental and health risks (García
et al., 2024).

The concept of geochemical background, however, has varying def-
initions in the literature. Traditionally, as proposed by Matschullat et al.
(2000), these values represent the natural concentration of elements in
the soil, unaffected by anthropogenic activities. In contrast, the ISO
19258 standard defines "background content" as the "content of a sub-
stance in a soil resulting from both natural geological and pedological
processes and including diffuse source inputs" (ISO-19258, 2018). This
definition notably includes diffuse source inputs, which may encompass
some anthropogenic influences.

The distinction between these definitions is significant when inter-
preting and comparing background values across different studies and
regulatory frameworks. For the purposes of this study, we adhere to the
ISO 19258 standard definition, recognizing that in many areas, espe-
cially those with long histories of human habitation and land use, it may
be challenging to find soils completely unaffected by human activities.
This approach allows for a more practical assessment of soil conditions
in the context of real-world environments where diffuse anthropogenic
inputs may be present.
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Various methods, such as direct, statistical, and integrated ap-
proaches, can be employed to estimate these background values
(Gałuszka, 2007; Lam et al., 2020). The choice of method and definition
can significantly impact the resulting background values and their
interpretation. In the context of Chile, the establishment of accurate
geochemical background values is particularly crucial. While Chile has
made progress in soil quality regulation with the introduction of
NCh3628 in 2019, "Soil quality - Sampling - Part 1: Guidance on the
design of sampling programmes", the country still lacks a comprehensive
environmental quality standard for soils that establishes specific
contaminant thresholds (Lam et al., 2023). The NCh3628 standard
provides guidance on soil sampling procedures, which is a fundamental
step towards soil quality assessment. However, it does not set specific
limit values for soil contaminants or define background levels. This gap
underscores the importance of establishing reliable geochemical back-
ground values to complement the existing sampling guidelines. These
values are essential to support the development of appropriate soil
quality guidelines and to accurately assess the environmental impact of
mining activities in the region. By providing a baseline against which to
measure potential contamination, geochemical background values serve
as a fundamental tool in environmental management and
policy-making, especially in areas with significant mining activities like
the Antofagasta region. The integration of robust sampling procedures
(as outlined in NCh3628) with well-established background values
would significantly enhance Chile’s capacity for comprehensive soil
quality assessment and management.

Despite the crucial role of geochemical background values in envi-
ronmental management, there is a scarcity of information regarding the
geochemical background of the Antofagasta Region. This paucity of data
impedes the accurate assessment of soil contamination levels and the
identification of pollution sources, which are vital for developing
effective environmental management strategies (Lam et al., 2020).
However, a valuable resource is available in the form of a database
compiled by the Antofagasta Regional Government (Project BIP
30359875-0, 2019) for the assessment of regional environmental risks,
which was based on a previous evaluation by CENMA (2014). In
particular, the database contains geochemical background levels (GBL)
for 32 analytes measured in surface samples (0–20 cm) from pristine
sites in the region. This study focused on the determination of metals
and metalloids, considering that mining is the predominant economic
activity in the Antofagasta region and the primary source of metal
concentrations in soils. The availability of this database provides a
foundation for assessing the natural geochemical background and dis-
tinguishing it from anthropogenic influences, which is essential for
implementing targeted environmental management measures in this
mining-intensive area. To address this knowledge gap, the present study
focuses on two main objectives.

1. Determine the background concentrations of environmentally rele-
vant elements in the soils around the city of Antofagasta, Chile.

2. Identify the source structures of elements to differentiate between
natural and anthropogenic sources around the city of Antofagasta,
Chile.

By establishing the geochemical background values, this research
aims to contribute to the development of effective environmental
management strategies and support the ongoing efforts to establish soil
quality standards in Chile. The findings of this study will provide valu-
able insights into the natural and anthropogenic factors influencing the
elemental composition of soils in the Antofagasta region by determining
and facilitating a better understanding of the environmental impact of
mining activities in the area. Furthermore, the results of this research
will serve as a foundation for future studies on soil contamination and
environmental management in the region, ultimately promoting sus-
tainable mining practices and protecting the environment and human
health.

2. Materials and methods

2.1. Area of study and geological background

The study area corresponds to the Antofagasta commune in the
Antofagasta region, Chile (23◦ 39′ 0″ South, 70◦ 24′ 0″ West) (Fig. 1A).
Note that communes in Chile correspond to the smallest administrative
subdivision of Chile (Biskupovic, 2015). In this case, the commune in-
cludes the city itself and its surroundings. The region has a total popu-
lation of 607,534 inhabitants and covers an area of 126,049 km2

(National Institute of Statistics, 2018). The Antofagasta region is char-
acterized by the development of resource exploitation operations and
mining activity. Human occupation and intervention in various cities of
the region have transformed the soil matrix from its natural origin. This
results in high soil heterogeneity, where zones with varied levels of
intervention in metal concentrations could be identified. Thus, the po-
tential for soil contamination is facilitated, which can pose hazardous
effects on human health and the ecosystem.

The Cordillera de la Costa (Fig. 1) represents the Upper Jurassic-
–Lower Upper Cretaceous Volcanic Arc. This period’s volcanic activity is
predominantly represented by the La Negra Formation, which reaches a
maximum thickness of 8 km (González and Niemeyer, 2005). The
plutonic rocks in the 18◦S to 25◦S segment exhibit a broad compositional
range, from gabbros to granites (Scheuber and Gonzalez, 1999). This
volcanic formation is intruded by several dikes, including basaltic,
andesitic, and dacitic types. The volcanic rocks mainly consist of
andesitic and basaltic andesite, interspersed with lesser amounts of
continental and marine volcaniclastics (Charrier et al., 2007, 2015) and
underlain by silica-rich pyroclastic rocks. Most of these plutonic rocks
and dikes display calc-alkaline composition (Oliveros et al., 2007). The
volcanic rocks were affected by different hydrothermal events during
the Jurassic and Cretaceous, which involved seawater (Kojima et al.,
2009). It should also be noted that within the intrusive bodies of the
Middle-Upper Jurassic, there are vein-type deposits that contain copper,
gold, and silver (Boric et al., 1990).

The Atacama Fault System in northern Chile, extending about 1000
km from 20◦S to 30◦S (González et al., 2006), controls pull-apart basins
with Oligocene–Miocene sediments overlying Mesozoic rocks and
Plio–Quaternary sediments (Kay et al., 1991; Muñoz and Stern, 1989). It
has formed several fore-arc basins in the northern Cordillera de la Costa,
notably at Salar Grande (20.5◦ - 20.8◦S), which contains mainly halite
saline deposits.

The sediments adjacent to the Cordillera de la Costa formed from
various geological periods and resulted from diverse geological pro-
cesses. These sediments include Quaternary colluvial, alluvial, eolian,
and littoral deposits; Neogene marine, littoral, alluvial, colluvial, and
eolian deposits; Lower Cretaceous continental sedimentary rocks,
mainly composed of carbonate minerals; and Jurassic volcanic and
intrusive rocks (Fig. 1B). The sedimentary sequence is predominantly
composed of gravel supported by a matrix consisting primarily of
medium-grained sandstone. The gravel clasts are typically composed of
andesitic volcanic rocks and contain fragments of marine shells. This
gravel is interbedded with thin layers of sandstone, siltstone, and clay,
varying in spatial distribution throughout the sequence. At the southern
area of Cerro Morro Moreno, metadioritic intrusive rocks are found,
containing small ultramafic pyroxenite inclusions. These inclusions,
covering less than 1 km2 (González and Niemeyer, 2005), are too small
to be represented at the scale of Fig. 1.

2.2. Sampling methodology, geochemical analysis and quality control

The geochemical data used in this study were obtained from a
comprehensive sampling campaign conducted by the Chilean Ministry
of the Environment in collaboration with the Regional Government of
Antofagasta (Project BIP 30359875-0, 2019). This database encom-
passes a total of 303 soil samples, of which a total of 94 soil samples were
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collected from strategically selected locations within the Antofagasta
commune, aiming to represent the diverse geological units present in the
area.

The selection of sampling sites was guided by the Geological Map of
Chile (scale 1:1,000,000) provided by the National Geology and Mining
Service (González and Niemeyer, 2005) and detailed geological maps at
scales ranging from 1:100,000 to 1:250,000, available on the SERNA-
GEOMIN website. The aforementioned samples from the Antofagasta
commune, which are the focus of this study, contain geochemical
background levels (GBL) for 32 analytes, including essential elements
and potentially toxic metals, measured in surface soil samples (0–20 cm)
collected from pristine sites.

The chemical analysis of the soil samples was performed using
Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The analyses
were conducted by a certified laboratory that adheres to a comprehen-
sive set of quality assurance and quality control (QA/QC) protocols,
including the use of certified reference materials (CRMs), matrix spikes,
and method blanks, as well as appropriate instrument calibration and
performance monitoring procedures. The original reference (Project BIP
30359875-0, 2019) contains annexes with the reports associated with
each sample.

The suite of 32 chemical elements analyzed in this study encom-
passes a wide range of geochemically and environmentally significant
parameters, including aluminum (Al), antimony (Sb), arsenic (As),
barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd),
calcium (Ca), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead
(Pb), lithium (Li), magnesium (Mg), manganese (Mn), mercury (Hg),
molybdenum (Mo), nickel (Ni), phosphorus (P), potassium (K), selenium
(Se), silver (Ag), sodium (Na), strontium (Sr), thallium (Tl), tin (Sn),
titanium (Ti), uranium (U), vanadium (V), and zinc (Zn).

By leveraging the geochemical data from the database, specifically
the 94 samples from the Antofagasta commune, this study establishes a
robust and locally relevant baseline for assessing soil geochemistry and
potential contamination in the study area. The use of this dataset ensures
that future evaluations of soil contamination levels and the delineation
of natural versus anthropogenic elemental sources are grounded in
reliable data that accurately capture the geochemical conditions of the
area under study.

2.3. Data analysis methodology

The data analysis methodology employed in this study consists of
four main components: Exploratory Data Analysis, Robust Data Anal-
ysis, Clustering Analysis, and Geostatistical Analysis.

2.3.1. Exploratory Data Analysis
Exploratory Data Analysis (Zuur et al., 2010) refers to the process of

conducting preliminary investigations to extract general information
from the data, discover patterns, and identify anomalies such as multi-
modality (e.g., using scatter plots, histograms, and box plots, among
others), and validate previous assumptions about the data population
using statistical summaries and graphs.

This phase also includes the process of cleaning the data set and
removing samples that have issues. In particular, considering the nature
of geochemical data, values below the detection limits (BDL) were
inspected and excluded following a conservative criterion to preserve as
much data as possible (Reimann et al., 2005). Thus, elements whose data
proportion exceeds 55% have been excluded from subsequent stages of
the study.

Fig. 1. (A) The study area in Chile, showing the Antofagasta city and the sampling points. (B) Geological map of the study area, derived from Servicio Nacional de
Geología y MineríaSERNAGEOMIN (2002).
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2.3.2. Robust Data Analysis
Robust Data Analysis (Filzmoser et al., 2009) techniques were

employed to address the limitations of standard statistical methods
when applied directly to raw geochemical data, which can lead to
imprecise or misleading results, hindering the accurate interpretation of
geochemical associations (Filzmoser et al., 2009). To overcome this
issue, various data transformations were utilized to approximate
normality and ensure homogeneity of variance (Reimann et al., 2002).
These transformations are part of a family of log-ratio transformations,
which include the additive log-ratio, centered log-ratio, and isometric
log-ratio transformations (Aitchison, 1982).

Among these transformations, the isometric log-ratio transformation
(Egozcue et al., 2003) was selected for this study due to its desirable
properties and robustness in the multivariate analysis of geochemical
data containing outliers (Reimann et al., 2011). The isometric log-ratio
transformation is an isomorphism that preserves the Euclidean geometry
of the sample space, enabling the application of standard multivariate
methods to the transformed data. Thus, in this study, the isometric
log-ratio transformation was chosen as it yielded more stable results
compared to other log-ratio transformations. The transformed data
served as the basis for subsequent statistical analyses, ensuring a more
accurate and reliable interpretation of geochemical associations in the
presence of compositional constraints and outliers.

As geochemical compositions presumably always contain outliers
and closure effects (Liu et al., 2016), the isometric log-ratio trans-
formation was applied to reveal the compositional structure of the
database. Transformations are employed to open compositional data-
bases (Egozcue et al., 2003). This transformation is widely accepted by
various researchers. Subsequently, Robust Factor Analysis was applied
to reduce dimensionality and identify structures between factors, along
with identifying sources of groups of elements that can be relatively
easily interpreted (Reimann et al., 2002). The term "robust" in this case
refers to a group of techniques tolerant to the presence of outliers in the
sampled dataset. This is done based on recommendations suggested by
Reimann et al., 2014.

Thus, moving forward, multivariate outlier values are detected in the
main dataset for the transformed data. The detection of potential
multivariate outliers is carried out using the robust Mahalanobis dis-
tance (Maronna & Zamar, 2002; Olive, 2004; Rousseeuw and Driessen,
1999). Two R software packages were utilized for these statistical ana-
lyses: “Compositions” (Van Den Boogaart et al., 2011) and “RobCom-
positions” (Templ et al., 2011).

In particular, three robust methods were employed to detect outliers:
the Olive-Hawkins RMVN method, the OGK method, and the Fast MCD
method. For each method, the robust Mahalanobis distance was calcu-
lated using the covrob(.), covOGK(.), and cov.mcd(.) functions from the
rrcov package, respectively. Data points with a robust Mahalanobis
distance greater than a specified threshold, defined as the square root of
the 97.5% quantile of the chi-squared distribution with degrees of
freedom equal to the number of variables, were considered outliers.

The outliers identified by each method were stored in separate vec-
tors, and the final set of outliers was obtained by taking the intersection
of the outliers identified by all three methods. This conservative
approach ensured that only data points consistently classified as outliers
by all three methods were considered true anomalies. The identified
outliers were then removed from the dataset, and the remaining data
points were used for further analysis. By combining multiple robust
methods and considering only the intersection of their results, the risk of
removing valid data points was minimized while ensuring that true
anomalies were detected and excluded from the study.

2.3.3. Clustering analysis
Clustering Analysis (Templ et al., 2008) was conducted to classify

similar groups in the geochemical database. The first step in the clus-
tering analysis process was to determine the optimal number of clusters.
Based on this optimal number of clusters, the final clustering of the data

(excluding anomalous points) was obtained using the K-means
algorithm.

In particular, the optimal number of clusters for the geochemical
dataset was determined using the NbClust package in R (Charrad et al.,
2014). This package provides 26 indices for determining the optimal
number of clusters and proposes the best clustering scheme from the
different results obtained by varying the number of clusters, the clus-
tering method, and the distance measures. The NbClust function was
applied to the transformed data, with a minimum of 2 and amaximum of
10 clusters, using the k-means clustering method and Euclidean dis-
tance. The majority rule was used to determine the optimal number of
clusters, which was found to be 3.

To further validate the optimal number of clusters, the gap statistic
method (Tibshirani et al., 2001). This method compares the total
within-cluster variation for different values of k (number of clusters)
with their expected values under a null reference distribution of the
data. The optimal number of clusters is determined by the smallest value
of k that yields a gap statistic greater than the gap statistic for k+1 minus
the standard error. The gap statistic also suggested 3 as the optimal
number of clusters for the geochemical dataset.

Next, K-means clustering (MacQueen, 1967) was then performed on
the transformed data using the kmeans function in R, with the number of
clusters set to 3, a maximum of 20 iterations, and 100 random sets to
ensure stable results. As mentioned before, the anomalous data points
identified in the previous step were not included in the clustering pro-
cess. The resulting clusters were designated as Cluster 1, Cluster 2, and
Cluster 3. Then, the average concentrations of the elements in each
cluster and the anomalous data points (considered as a separate "noise"
cluster) were calculated. These average concentrations provide insights
into the geochemical characteristics of each cluster and the anomalous
data points (Table 2).

Finally, we compute three potential background values based on
different criteria for identifying samples with unusually high concen-
trations of elements (Desaules, 2012; Redon et al., 2013). The first
method, known as the "MAD" method, calculates the median + 2MAD
(median absolute deviation) (Reimann et al., 2005; Teng et al., 2010;
Tume et al., 2018). In the second method, the upper whisker of a Tukey
boxplot is used, and this value is calculated by the third quartile +1.5
IQR (interquartile range) (Tume et al., 2019; McIlwaine et al., 2014).
The third method involves using the 95th percentile as a threshold
(Ander et al., 2013; Johnson et al., 2012). These methods provide us
with robust estimates of the background values for the identified
geochemical clusters.

2.3.4. Geostatistical analysis
Geostatistical Analysis (Kumar and Sinha, 2018) was employed to

analyze the spatial distribution of the geochemical factors identified
through principal factor analysis. This process involved creating inter-
polated surfaces using the Inverse Distance Weighting (IDW) method to
visualize the spatial patterns of each factor across the Antofagasta
commune and identify both the structure and geochemical anomalies
(Khadka, 2023).

The IDW interpolation was performed using the KDTree method
from the scipy library in Python (Virtanen et al., 2020). A grid of points
covering the extent of the Antofagasta region was created, and the factor
values were interpolated at each grid point using the IDW algorithm.
The number of nearest neighbors (k) and the power parameter (p) were
set to 10 and 2, respectively, to control the influence of nearby points on
the interpolated values.

The resulting interpolated surfaces were then clipped to the bound-
aries of the Antofagasta commune using the geopandas library
(Shreemathi et al., 2024) and the provided shapefile of the region. This
ensured that the geostatistical analysis focused specifically on the area of
interest. The clipped interpolated surfaces were visualized using the
matplotlib library (Hunter, 2007), with each factor plotted separately.
The plots included the Antofagasta region boundary, the interpolated
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surface displayed as a heatmap, and the original sampling points over-
laid on the map. A color bar was added to represent the range of factor
values.

These geostatistical maps provided valuable insights into the spatial
distribution of the geochemical factors within the Antofagasta
commune. They allowed for the identification of areas with higher or
lower factor values, potentially indicating variations in the underlying
geological or anthropogenic processes influencing the geochemical
composition of the soils.

By combining the results of the principal factor analysis with the
geostatistical maps, a comprehensive understanding of the geochemical
patterns and their spatial distribution within the Antofagasta commune
was achieved. This information can be further interpreted in the context
of geological features and potential contamination sources to guide
environmental management and decision-making in the region.

3. Results

3.1. Discarded elements

The exclusion of elements with insufficient data (<50%) regarding
the detection level is imperative. In this initial step, the following ele-
ments were excluded: Ag, B, Be, Cd, Hg, Mo, Sb, Se, Sn, Tl, and U. Out of
the elements present in the raw data table (32 elements), a refined se-
lection is made, retaining 21 elements for further analysis.

This selection process is crucial for ensuring the reliability and
robustness of the subsequent statistical analyses. Elements with inade-
quate data may introduce bias or uncertainty into the results, potentially
compromising the overall integrity of the study. By focusing on the
subset of elements with sufficient and reliable data, the analysis can
yield more accurate insights into the environmental characteristics of
the Antofagasta commune.

3.2. Preliminary factor analysis

The next crucial step involves a preliminary principal factor analysis
(PFA). Through this analysis, it is determined that the appropriate
number of factors is 5, sufficient to account for approximately 70% of
the variance in the data. This strategic selection ensures a balance be-
tween capturing significant variability in the data and avoiding unnec-
essary complexity.

In the results of this PFA, two elements, namely Bi and Ca, are
identified and subsequently excluded from further consideration due to
their low communalities (<0.5). Communalities represent the propor-
tion of variance in each variable that can be explained by the extracted
factors. In this case, their exclusion is warranted by their limited
contribution to the overall variance structure.

However, despite having a communality value below 0.5, Pb is
retained in the analysis due to its paramount significance in soil pollu-
tion studies. The decision to preserve Pb is informed by its known
environmental relevance and potential impact on contamination as-
sessments. This deliberate choice ensures that the analysis maintains a
comprehensive perspective on potential sources and implications of
pollution in the Antofagasta commune.

With the exclusion of Bi and Ca the retention of Pb, the dataset is
refined to a final set of 19 variables. These variables, characterized by
their relevance to environmental factors and pollution dynamics, will be
further explored in subsequent analyses to unravel the underlying pat-
terns of soil geochemistry in the studied area.

3.3. Anomaly detection

Following this preliminary analysis and the exclusion of less
important variables, the three anomaly detection methods mentioned
before were employed to identify outliers within the remaining dataset.
The identification of outliers is crucial for maintaining the integrity of

the subsequent statistical analyses, ensuring that unusual or extreme
values do not unduly influence the overall interpretation of the results.

The analysis reveals the presence of 16 anomalous data points out of
94 total samples, which are subsequently removed from further
consideration. It is worth noting that the exact number of outliers
identified may vary slightly depending on the specific method used for
data normalization (e.g., ranging from 15 to 20 discarded data points).
However, the decision to discard these outliers is made with care to
maintain the consistency and reliability of the results.

This approach to handling outliers is necessary for obtaining a
clearer understanding of the underlying environmental dynamics in the
Antofagasta commune. The subsequent analyses, which include tech-
niques such as cluster analysis and spatial mapping, will be conducted
on a refined dataset that is free from the influence of extreme values.
This ensures that the interpretations and conclusions drawn from the
study are robust, reliable, and reflective of the true environmental
conditions in the area under investigation.

3.4. Principal factor analysis

The final principal factor analysis, conducted after the removal of
anomalous data, is presented in Table 1. The loadings represent the
weights assigned to each element within the identified factors.

The interpretation of these factors, along with their respective
loadings, forms a foundation for understanding the dominant sources
and influencing factors contributing to the variability observed in the
soil samples. This knowledge is crucial for informing environmental
management strategies and regulatory decisions in the studied area.

We now present the analysis and interpretation of each factor.

● Factor 1: The first factor appears to represent a combination of el-
ements associated with both natural geological processes and po-
tential anthropogenic influences. High positive correlations among
Cu, Fe, and Zn suggest a common source, possibly related to mineral
deposits or industrial activities. The presence of Pb may indicate
additional anthropogenic contributions. Mg and Mn could be linked
to natural geological formations.

● Factor 2: The second factor seems to capture elements associated
with different geological and geochemical processes. Al often reflects
the influence of silicate minerals, while As may have both natural
and anthropogenic sources. Ba is commonly associated with mineral
deposits, and K is indicative of feldspar and mica minerals. Li is often
found in igneous rocks, particularly in pegmatites and lithium-rich
brines, and its presence in this factor may suggest the influence of

Table 1
Factor Loadings for the PFA. The highest absolute loading for each element is
bolded for clarity.

Element Factor 1 Factor 2 Factor 3 Factor 4

Al 0.507 0.586 ​ 0.560
As ​ 0.912 − 0.129 ​
Ba 0.190 0.586 ​ − 0.148
Cr ​ − 0.262 0.150 0.787
Co 0.865 0.165 − 0.191 0.391
Cu 0.730 0.254 − 0.158 0.283
Fe 0.896 0.211 − 0.309 0.112
Pb 0.427 0.257 ​ ​
Li 0.531 0.791 − 0.141 ​
Mg 0.530 0.393 0.443 0.363
Mn 0.971 ​ ​ ​
Ni 0.274 0.246 − 0.304 0.813
P ​ − 0.193 0.836 ​
K 0.158 0.905 ​ 0.229
Na ​ 0.443 0.577 0.272
Sr − 0.277 ​ 0.792 − 0.186
Ti 0.119 0.383 ¡0.671 ​
V 0.821 0.148 − 0.375 0.138
Zn 0.890 ​ 0.156 ​
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lithium-bearing geological formations or the occurrence of
geothermal activity. This factor may represent the natural variability
in the geological composition of the soil.

● Factor 3: The third factor is characterized by P, Na, Sr, and Ti. The
negative correlation of Ti with this factor suggests an inverse rela-
tionship. P could be associated with organic matter or fertilizers,
while Na and Sr may have both natural and anthropogenic origins.
The negative correlation with Ti may indicate a distinct geological
source for Ti.

● Factor 4: The fourth factor includes Cr and Ni. These elements are
commonly associated with intrusive rocks and certain industrial
activities. The positive correlation between Cr and Ni suggests a
shared source, potentially related to natural geological processes or
human activities.

3.5. Clustering analysis

For the clustering analysis, it was determined that the optimal divi-
sion of the dataset was into three distinct clusters, with anomalous data
considered as an additional “noise” cluster. The purpose of this clus-
tering analysis is to reveal patterns and associations within the
geochemical composition of the Antofagasta commune.

Table 2 presents the average concentrations of various elements
across the different samples in the Antofagasta commune. The clustering
results showcase the average concentrations for each element within the
identified clusters. These results also provide valuable insights into the
distribution and variability of elemental concentrations in the study
area. Despite not being considered during the cluster constructions, the
elements Ca and Bi were included in the description of each cluster, as
they have potential utility in providing additional insights into the
environmental context. The spatial distribution of the three extracted
clusters, excluding the anomalous data points, is shown in Fig. 2.

The interpretation of these clusters is essential for understanding the
spatial distribution of elements and potential sources of variation within
the studied area. The average values derived from each cluster can serve
as background concentrations, offering a reference point for future
environmental assessments. This information is valuable for identifying
areas with similar geochemical characteristics, which may be influenced
by common geological formations, soil types, or anthropogenic activ-
ities. Thus, the clusters provide a basis for further investigation into the

factors influencing elemental concentrations and support the develop-
ment of targeted environmental management strategies based on the
distinct characteristics of each group.

Similar to the aforementioned factors, the extracted clusters can be
interpreted to provide insights into the distribution of the observed el-
ements in the soil samples.

We now present the analysis and interpretation of each cluster.

● Cluster 1: The first cluster exhibits heightened concentrations of Al,
As, Ba, Bi, Co, Fe, Pb, Mn, K, V, and Zn. The intricate amalgamation
of these elements implies a complex interplay between geological
and anthropogenic factors in the Commune of Antofagasta. The
presence of metals such as Pb and Mnmay signal historical industrial
activities, while elements like Al and K likely originate from
geological sources. The diverse concentration levels within this

Table 2
Average concentration (mg kg− 1) of each element in the extracted clusters. The
highest concentration for each element is bolded for clarity (excluding the noise
cluster).

Element C1 Avg C2 Avg C3 Avg Noise

mg kg− 1

Al 13,902.38 10,444.24 13,892.86 15,701.50

As 13.24 9.41 11.70 13.76
Ba 44.90 37.49 39.42 46.87
Bi 36.83 34.04 33.44 42.74
Ca 36,283.62 54,147.95 71,960.35 128,773.44
Cr 23.65 20.90 24.59 26.73
Co 12.36 8.73 11.53 13.54
Cu 70.54 49.76 127.22 231.79
Fe 30,657.75 24,342.76 25,821.35 28,797.75
Pb 12.38 9.00 11.36 15.58
Li 20.90 15.53 21.86 29.29
Mg 13,896.25 11,420.43 17,225.41 22,492.88
Mn 830.25 471.52 635.69 934.42
Ni 12.14 8.27 12.96 13.97
P 1871.38 2485.86 1346.41 2494.62
K 1868.00 1333.71 1843.18 2282.12
Na 2853.50 2227.24 2912.57 3371.62
Sr 193.52 355.99 204.91 307.95
Ti 513.62 690.35 638.91 736.74
V 87.65 80.96 79.06 86.20
Zn 219.44 75.83 98.63 218.62

Fig. 2. Clustering analysis of the geochemical data of the Antofagasta
commune. There are three clusters. The K-means clustering method does not
account for the geographical location of the samples, just their geochemical
characteristics.
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cluster underscore the necessity for a nuanced understanding of the
intricate balance between natural geological processes and past
human-induced activities shaping the region’s geochemical profile.

● Cluster 2: The second cluster is distinguished by elevated levels of P,
Sr, and Ti. This grouping suggests a composite influence of both

natural geological processes and potential anthropogenic sources.
While agricultural practices, including fertilizers, are not a promi-
nent factor, the geological origins of Sr and Ti concentrations add a
distinct layer to this cluster. The unique composition of Cluster 2
underscores the importance of unraveling specific elemental

Fig. 3. Spatial analysis of the geochemical factors identified through principal factor analysis. The maps display the spatial distribution of factor scores, which
represent the relative influence of each factor at each sampling location.
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associations to comprehend the nuanced environmental dynamics at
play in the Commune of Antofagasta.

● Cluster 3: The third cluster encompasses Ca, Cr, Cu, Li, Mg, Na, and
Ni. The presence of these elements in this cluster hints at a dynamic
interplay between geological processes and potential anthropogenic
influences. Common soil constituents like Ca and Mg likely have
geological origins, while elements such as Cr, Cu, and Ni may be
linked to both natural geological processes and industrial sources.
The inclusion of Li points towards geological formations, empha-
sizing the heterogeneous nature of the soil composition in the
Commune of Antofagasta. Cluster 3 underscores the intricate balance
between natural geological processes and potential anthropogenic
factors shaping the geochemical landscape of the region.

● Noise Cluster: The noise cluster with all the anomalous data exhibits
variability in elemental concentrations, potentially indicating het-
erogeneity or a mix of influences, which makes sense given its defi-
nition. It includes higher concentrations of certain elements like Ca,
Mg, and Sr. This variability may result from a combination of natural
geological processes and anthropogenic activities, highlighting the
complexity of environmental conditions in these areas.

3.6. Geological analysis

The supplementary materials contain 19 dot concentration maps
showing the spatial distribution of the chemical elements analyzed in
this investigation. Based on the spatial analysis of the geochemical
factors (Fig. 3) and considering the geological context, the following
processes can be inferred.

● The spatial distribution of Factor 1 can be primarily attributed to
Jurassic volcanic arc rocks, which are known to contain high con-
centrations of Al, Fe, Mn, and Zn. Additionally, Cu Co and V could be
due to the region’s potential mineralizations associated with these
volcanic rocks. The spatial interpolation map of Factor 1 shows
higher values in areas that align with the known distribution of these
volcanic rocks, suggesting geological control (For a more detailed
view of the spatial distribution of the elements of factor 1, please
refer to the dot concentration maps for Al, Fe, Mn, Zn, Cu, Co, and V
in the supplementary material).

● Factor 2 is likely explained by intrusive rocks and higher concen-
trations of feldspars indicated by the elevated levels of K, Al, and Na
(dot concentration maps of K, Al, and Na of the supplementary ma-
terial). The spatial distribution map for Factor 2 shows lower values
in coastal areas with marine sediments and higher values inland
where intrusive rocks are more common. This suggests that the
geochemical signature of Factor 2 is influenced by the presence of
intrusive rock bodies that are rich in feldspars.

● The elevated values of Factor 3 in coastal areas suggest a strong as-
sociation with marine sediments. This is supported by the higher
concentrations of elements like Sr, typically enriched in marine en-
vironments (dot concentration maps of Sr of the supplementary
material). The spatial map of Factor 3 clearly shows higher values
along the coast, aligning with the distribution of marine sediments.

● Intrusive rocks might influence Factor 4, given the association with
elements such as Cr, Ni, andMg. These rocks are known for their high
concentrations of these elements. The spatial distribution map for
Factor 4 shows certain localized high values that could correspond to
areas where ultramafic rocks or related geological formations are
present (dot concentration maps of Cr, Ni, and Mg of the supple-
mentary material).

The spatial distribution maps for Factors 1 and 2, while showing
some localized high values, are based on a robust dataset. These high
values, potentially due to interpolation issues, should be interpreted
with caution. More data points and further geological investigation are
needed to confirm whether these are due to geological phenomena or

interpolation effects.
The high concentrations of Al, Fe, Mn, and Zn suggest significant

influence from Jurassic volcanic rocks. Cu, Co, and V indicate possible
hydrothermal processes or secondary mineralization related to volcanic
rocks that are subsequently observed in the soil samples (Herrera et al.,
2023). The high concentrations of Al, K, and Na indicate intrusive rocks
rich in feldspars. This is consistent with the region’s geological history,
which includes significant intrusive activity. The low values in coastal
sediments and higher values inland suggest a clear differentiation be-
tween marine sediment influence and terrestrial geological formations.
The elevated Sr values point to marine sediment influence, corroborated
by the spatial distribution map showing higher values along the coast-
line. This factor highlights marine processes’ geochemical contribution
in shaping coastal regions’ sediment composition. The association with
Cr, Ni, and Mg suggests ultramafic rock influence, possibly from
mantle-derived materials or ultramafic intrusions. The map shows spe-
cific areas with high concentrations, likely pointing to localized
geological formations with ultramafic characteristics.

3.7. Geochemical background estimates

The final geochemical background concentrations for the elements in
the Antofagasta commune were determined using the clustering results
and three estimation methods mentioned before (MAD, upper whisker,
and 95th percentile methods). The background concentrations were
calculated separately for each of the three clusters identified through the
k-means clustering analysis. We show the average for all three methods
in Table 3. In the supplementary material, we provide Table S1 which
contains all the results for the three estimation methods.

Cluster 1 generally exhibits the lowest background concentrations
for most elements, with notable exceptions being Cu, Pb, and Sr. The
median+ 2MAD estimates for Cluster 1 range from 10.75mg kg− 1 for As
to 62,227.50 mg kg− 1 for Fe. The Tukey boxplot upper whisker values
are slightly higher, ranging from 15.74 mg kg− 1 for As to 76,345.63 mg
kg− 1 for Fe. The 95th percentile values provide the most conservative
estimates, with As at 14.98 mg kg− 1 and Fe at 62,598.30 mg kg− 1.

Cluster 2 displays higher background concentrations compared to
Cluster 1 for several elements, including Ca, Mn, P, and Sr. The median
+ 2MAD estimates for Cluster 2 range from 6.10 mg kg− 1 for Pb to
167,394.00 mg kg− 1 for Ca. The Tukey boxplot upper whisker values
span from 9.70 mg kg− 1 for As to 328,000.50 mg kg− 1 for Ca. The 95th

Table 3
Average background concentration (mg kg− 1) of each element in the extracted
clusters based on the MAD, Upper Whisker, and 95th Percentile methods.

Element C1 Background C2 Background C3 Background

mg kg− 1

Al 23,217.74 14,067.50 19,851.90
As 13.82 9.10 24.72
Ba 55.39 40.55 76.30
Bi 56.93 65.28 72.18
Ca 59,708.63 23,9427.80 77,701.07
Cr 31.94 32.87 35.09
Co 28.59 11.02 14.54
Cu 158.98 56.38 121.05
Fe 67,057.14 24,290.50 35,654.77
Pb 26.40 12.00 21.52
Li 50.23 19.88 33.47
Mg 38,084.41 29,600.67 22,603.30
Mn 2740.01 657.33 638.60
Ni 17.46 10.60 19.62
P 5408.09 10,747.67 1595.40
K 2954.80 1497.17 2949.33
Na 6815.41 5343.33 6164.50
Sr 199.15 1853.67 310.63
Ti 924.37 453.33 1177.83
V 173.72 80.57 114.35
Zn 675.92 135.50 96.12
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percentile values range from 8.4 mg kg− 1 for Ni to 222,889.00 mg kg− 1

for Ca.
Cluster 3 exhibits the highest background concentrations for most

elements among the three clusters. The median + 2MAD estimates for
Cluster 3 range from 12.50 mg kg− 1 for Co to 36,342.00 mg kg− 1 for Ca.
The Tukey boxplot upper whisker values extend from 17.55 mg kg− 1 for
Co to 88,178.00 mg kg− 1 for Ca. The 95th percentile values range from
13.58 mg kg− 1 for Co to 108,583.20 mg kg− 1 for Ca.

The three estimation methods provide a range of background con-
centration values for each element within the clusters. The median +

2MAD method offers a balance between robustness and sensitivity to
outliers, while the Tukey boxplot upper whisker and the 95th percentile
methods provide more conservative estimates.

4. Discussion

The geochemical complexity of the Antofagasta commune is deter-
mined by the interaction of its unique geological environment and the
presence of mineral deposits, extreme aridity, and the influence of
anthropogenic activities.

4.1. Discussion on local geology and its impact on soil geochemistry

The Jurassic volcanic rocks of the region, represented by the La
Negra Formation, play a significant role in the area’s geochemical
background. These volcanic rocks, which reach a maximum thickness of
8 km and are mainly composed of andesites and basaltic andesites
interbedded with lesser amounts of continental and marine volcani-
clastic rocks (Charrier et al., 2007), host various mineral deposits, such
as copper, gold, and silver (Boric et al., 1990). The high concentrations
of elements like Cu, Co, and V in the soil samples can be attributed to the
presence of these mineral deposits and the associated hydrothermal
processes that have enriched these elements in the volcanic rocks
(Herrera et al., 2023). These hydrothermal processes, which involved
seawater during the Jurassic and Cretaceous, affected the volcanic rocks
and contributed to the formation of manto-type deposits containing
copper, gold, and silver (Boric et al., 1990; Kojima et al., 2009).

The intrusive rocks of the region, particularly those of the Middle-
Upper Jurassic, also contribute to the geochemical diversity of the
Antofagasta commune. These intrusive bodies are characterized by a
wide compositional range, from gabbros to granites (Scheuber and
Gonzalez, 1999), and exhibit high concentrations of elements such as K,
Al, and Na, indicative of the presence of feldspars. Additionally, within
these intrusive bodies, there are vein-type deposits that contain copper,
gold, and silver mineralizations (Boric et al., 1990). The spatial distri-
bution of these elements, revealed by the factor analysis and geo-
statistical maps, aligns with the known distribution of the intrusive rocks
in the area.

In addition to the geological influences, anthropogenic factors have
played a significant role in shaping the geochemical landscape of the
Antofagasta commune. The region has a long history of mining activ-
ities, especially related to copper extraction. The transport of minerals
along road networks for several decades has likely contributed to the
dispersion of metals and other elements into the surrounding environ-
ment (Lagos and Blanco, 2010). The presence of small-scale mining
operations in the region can also introduce additional elements into the
soil through the exposure of mineralized rocks, generation of mine
tailings, and the use of processing chemicals (Lam et al., 2016).

Enrichment factors suggest that Fe could originate from any outcrop
present in the area, while Mn could come from metamorphic, volcanic,
and intrusive rocks. Therefore, it is inferred that both elements are
naturally present in the soil of Antofagasta and their concentrations are
comparable to the world average for these elements at the continental
crust level (Fe 3.9% or 39,176.00 mg kg− 1 and Mn 0.077% or 774.00 mg
kg− 1; Rudnick and Gao, 2003). However, Tapia et al. (2018) consider
that As could originate from soils previously enriched or contaminated

with this element, while Mn and Fe are not considered contaminants and
could originate from the rocks present in the region.

The integration of these findings with the geochemical analysis and
background concentration estimates presented in this study contributes
to a more comprehensive understanding of the geochemical complexity
of the region. It highlights the importance of distinguishing between
natural geological sources and anthropogenic contaminants when
assessing soil composition and potential environmental and health risks
in the Antofagasta commune.

The spatial distribution maps of the geochemical factors, albeit with
some limitations, offer valuable insights into the spatial patterns and
their alignment with the region’s geological features. However, the
spatial variability of certain elements near the port and their possible
relationship to mineral transport and storage activities highlights the
need to consider both natural and anthropogenic sources when inter-
preting these patterns.

4.2. Effect of arid climate on soil contamination

In arid regions, it is well known that climatic aridity facilitates the
accumulation of dust from both the weathering of local geological for-
mations and the contribution of dry, anthropogenic residues carried by
the wind (Custodio, 1992). In the Atacama Desert, materials deposited
on the soil surface tend to remain in place and not leach (Amundson,
2003). This occurs due to the hyperaridity, and the extremely low pre-
cipitation recorded in the Atacama Desert, meaning that the arid land-
scape is not subject to regular water erosion, except for the few rivers,
some of which are intermittent, that are fed by precipitation in the
highlands (Arenas-Díaz et al., 2022). Specifically in the coastal area of
Antofagasta, this phenomenon is associated with the significant amount
of marine aerosol that can accumulate over decades before being
washed away by rainfall and recharging the aquifers (Herrera and
Custodio, 2014).

The hyper-arid climate of the city of Antofagasta has a significant
impact on soil contamination, as the dry conditions and low precipita-
tion limit the natural leaching of pollutants. Due to the limited avail-
ability of water, contaminants do not dissolve or move to deeper layers
of the soil, resulting in higher concentrations at the surface and
increasing the risk of exposure and wind-driven displacement, particu-
larly in coastal areas. This condition promotes the accumulation of
heavy metals, primarily originating from mining and industrial activ-
ities, which do not dilute or disperse easily (Golan et al., 2024).

Research conducted in the urban center of Antofagasta shows the
buildup of fine particulate matter on the façades of buildings and houses,
which remains indefinitely due to the near absence of rainfall (Palme,
2014). This phenomenon is a clear indication of what could also occur in
the suburban areas of Antofagasta, where fine particulate matter would
accumulate on the surface of various soils and persist for extended pe-
riods due to the lack of precipitation. The concentration of heavy metals
accumulating on the soil surface would be directly linked to the region’s
arid climate.

Studies continue to provide evidence of the significant influence of
anthropogenic mining activities on the geochemical composition of the
Antofagasta region (Queirolo et al., 2000). Tapia et al. (2018) examined
the distribution and enrichment of various elements, including Cu and
As, in river sediments across the Northern Atacama Region. Their
findings indicate substantial enrichment of these elements in areas
affected by mining activities, with enrichment factors for Cu reaching up
to 55 times the background levels in some locations. Moreover, they
observed that the redistribution of these elements extends far beyond
the immediate vicinity of mining operations, affecting downstream
watersheds. These results align with earlier observations by Flynn et al.
(2002), who reported Cu levels of up to 499 mg L-1 in aqueous extracts
of soil and sediment samples from the Antofagasta lowlands, with
elevated concentrations extending up to 20 km away from a Cu smelter.
The persistence of these geochemical signatures over time, as evidenced
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by these studies, underscores the long-term impact of mining activities
on the region’s environment and highlights the ongoing need for
comprehensive environmental monitoring and protection measures.

4.3. Limitations

The current study provides valuable insights into the geochemical
characteristics and spatial distribution of elements in the Antofagasta
commune. However, the analysis has relied on a limited number of
sampling points, which may not fully capture the spatial variability of
the geochemical factors across the entire study area. Additionally, while
the IDWmethod used for spatial interpolation is robust and widely used,
it has some limitations, such as sensitivity to outliers and extreme
values, lack of uncertainty quantification for the interpolated values,
smoothing effect that may obscure local variations, and inability to
extrapolate beyond the extent of the sampling points.

To address these limitations and further enhance the analysis, future
studies could consider increasing the sampling density, exploring more
advanced geostatistical methods, incorporating additional environ-
mental and anthropogenic variables, and conducting temporal studies
and validation using independent datasets or ground-truthing tech-
niques. These approaches would provide a more comprehensive un-
derstanding of the geochemical complexity of the Antofagasta commune
and improve the robustness and reliability of the findings.

In general, the integration of geochemical, geological, and anthro-
pogenic contamination data is essential for developing effective envi-
ronmental management strategies in the region. Future studies
addressing the spatial and temporal variability of contamination, as well
as the mechanisms of element transport and dispersion, would provide a
strong foundation for decision-making and the protection of the envi-
ronment and public health in the Antofagasta commune.

5. Conclusions

This study aimed to unravel the geochemical complexities of the
Antofagasta commune through a comprehensive analysis of soil sam-
ples. Multivariate statistical approaches, including principal factor
analysis and cluster analysis, provided valuable insights into the vari-
ability of environmental elements and the factors influencing their dis-
tribution. Through the application of robust multivariate statistical
methods and geostatistical analysis, we have identified four principal
factors and three distinct geochemical clusters that characterize the
region’s soil composition.

Our findings reveal that the geochemical background of Antofagasta
is primarily determined by its diverse geological setting, which includes
Jurassic volcanic and intrusive rocks, and Cenozoic marine sediments.
However, the long history of mining activities in the region has left a
discernible imprint on the soil geochemistry, particularly evident in the
elevated concentrations of elements such as Cu, As, and Pb in certain
areas.

The establishment of element-specific background concentrations for
each identified cluster provides a nuanced understanding of the region’s
geochemical baseline. This information is invaluable for distinguishing
between natural elemental enrichment and anthropogenic contamina-
tion, a critical distinction in a region with significant mining activities.

The spatial distribution maps of geochemical factors, generated
through geostatistical analysis, offer a visual representation of the
complex patterns of elemental distribution across the commune. These
maps, when interpreted in conjunction with geological data, provide a
powerful tool for identifying areas of potential environmental concern
and guiding targeted sampling and remediation efforts.

The methodological approach employed in this study, combining
robust statistical techniques with spatial analysis, offers a comprehen-
sive framework for geochemical characterization that can be adapted to
other mining-intensive regions worldwide. This approach is particularly
valuable in areas with complex geological histories and significant

anthropogenic influences, where distinguishing between natural and
human-induced geochemical signatures is challenging.

While this study provides a solid foundation for understanding the
geochemical landscape of Antofagasta, it also highlights areas for future
research. These include the need for higher-resolution sampling in areas
of particular interest, the incorporation of additional environmental
variables, and the exploration of temporal changes in soil geochemistry.

In conclusion, this research not only enhances our understanding of
Antofagasta’s geochemical makeup but also provides a robust scientific
basis for informed decision-making in environmental management,
urban planning, and the development of region-specific soil quality
guidelines. By offering a more nuanced perspective on what constitutes
’background’ levels in a mining-intensive region, this study contributes
to the broader field of environmental geochemistry and supports the
development of sustainable mining practices in Chile and beyond.
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Bol, R., 2022. Dust and aerosols in the Atacama Desert. Earth Sci. Rev. 226, 103925.

Arens, F.L., Airo, A., Feige, J., Sager, C., Wiechert, U., Schulze-Makuch, D., 2021.
Geochemical proxies for water-soil interactions in the hyperarid Atacama Desert,
Chile. Catena 206, 105531.

Biskupovic, C., 2015. From rural haven to civil political project: utopian ideals and
environmental protection in the precordillera, Santiago, Chile. Journal of Political
Ecology 22 (1), 183–198.

B.F. Keith et al. Chemosphere 366 (2024) 143472 

11 

https://doi.org/10.1016/j.chemosphere.2024.143472
https://doi.org/10.1016/j.chemosphere.2024.143472
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref1
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref1
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref2
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref2
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref3
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref3
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref3
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref4
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref4
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref5
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref5
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref5
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref6
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref6
http://refhub.elsevier.com/S0045-6535(24)02370-1/sref6


Boric, R., Díaz, F., Maksaev, V., 1990. Geología y yacimientos metalíferos de la Región de
Antofagasta, vol. 40. Servicio Nacional de Geología y Minería, Boletín, p. 246.
Santiago.

Castro, S.H., Sánchez, M., 2003. Environmental viewpoint on small-scale copper, gold
and silver mining in Chile. J. Clean. Prod. 11 (2), 207–213.

CENMA, 2014. Informe final Versión 5. Diagnóstico regional de suelos abandonados con
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Internacional de Mètodes Numèrics en Enginyería- Universitat Politècnica de
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Muñoz, J.B., Stern, C.R., 1989. Alkaline magmatism within the segment 38◦–39◦ S of the
plio-quaternary volcanic belt of the southern south American continental margin.
J. Geophys. Res. Solid Earth 94 (B4), 4545–4560.

Nacional Institute of Statistics, 2018. Estimaciones y proyecciones de la población de
Chile 1992–2050. Instituto Nacional de Estadistica. Subdepartamento de Demografía
y Estadísticas Vitales.

Olive, D.J., 2004. A resistant estimator of multivariate location and dispersion. Comput.
Stat. Data Anal. 46 (1), 93–102.
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