@ knowledge

Article

Enhancing Chatbot Performance in a SaaS Platform Through
Retrieval-Augmented Generation and Prompt Engineering;:
A Case Study in Behavioral Safety Analysis

Jorge Rivera 'f, Scarlett Zapata 'f, Ricardo Pizarro (" and Brian Keith *

check for
updates

Academic Editor: Sharifu Ura

Received: 19 August 2025
Revised: 20 October 2025
Accepted: 27 October 2025
Published: 5 November 2025

Citation: Rivera,].; Zapata, S.;
Pizarro, R.; Keith, B. Enhancing
Chatbot Performance in a SaaS Platform
Through Retrieval-Augmented
Generation and Prompt Engineering: A
Case Study in Behavioral Safety
Analysis. Knowledge 2025, 5, 25.
https://doi.org/10.3390/
knowledge5040025

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

Department of Computing & Systems Engineering, Universidad Catodlica del Norte,

Antofagasta 1270709, Chile; jorge.rivera0l@alumnos.ucn.cl (J.R.); scarlett.zapata@alumnos.ucn.cl (S.Z.)
2 Pignus, Antofagasta 1271452, Chile

Correspondence: brian.keith@ucn.cl

These authors contributed equally to this work.

Abstract

This article presents a case study showing the development of a chatbot, named Selene,
in a Software-as-a-Service platform for behavioral analysis using Retrieval-Augmented
Generation (RAG) integrating domain-specific knowledge and enforcing adherence to
organizational rules to improve response quality. Selene is designed to provide deep
analyses and practical recommendations that help users optimize organizational behavioral
development. To ensure that the RAG pipeline had updated information, we implemented
an Extract, Transform, and Load process that updated the knowledge base of the pipeline
daily and applied prompt engineering to ensure compliance with organizational rules and
directives, using GPT-4 as the underlying language model of the chatbot, which was the
state-of-the-art model at the time of deployment. We followed the Generative Al Project
Life Cycle Frameworkas the basic methodology to develop this system. To evaluate Selene,
we used the DeepEval library, showing that it provides appropriate responses and aligning
with organizational rules. Our results show that the system achieves high answer relevancy
in 78% of the test cases achieved and a complete absence of bias and toxicity issues. This
work provides practical insights for organizations deploying similar knowledge-based
chatbot systems.

Keywords: information retrieval; prompt engineering; large language models; behavioral
analysis; software-as-a-service

1. Introduction

Chatbots began as simple rule-based systems, but they have since become complex
virtual assistants, customer service agents, and knowledge-sharing platforms that serve
millions of users [1]. Recent developments in artificial intelligence (AI) and natural lan-
guage processing (NLP) have allowed these systems to conduct conversations that resemble
human interaction [2]. In particular, the emergence of Large Language Models (LLMs)
has accelerated the development of chatbots, enabling them to better understand their
interactions, generate relevant responses given a specific context, and adapt their behavior
based on specific user needs through human—-computer interaction [3].

In this work, we present a case study on the development of a chatbot in the behavioral
analysis domain [4-6]. In particular, behavior analysis studies human behavior in organi-
zational contexts to understand, predict, and influence it [7,8]. In particular, practitioners

Knowledge 2025, 5, 25

https:/ /doi.org/10.3390/ knowledge5040025

https://doi.org/10.3390/knowledge5040025
https://doi.org/10.3390/knowledge5040025
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/knowledge
https://www.mdpi.com
https://orcid.org/0000-0001-7894-0236
https://orcid.org/0000-0001-5734-8962
https://doi.org/10.3390/knowledge5040025
https://www.mdpi.com/article/10.3390/knowledge5040025?type=check_update&version=1

Knowledge 2025, 5, 25

2 of 20

in this field analyze behaviors along with their antecedents and consequences and then
design interventions to promote desired outcomes [9].

Building chatbots for organizational use presents two primary obstacles. First, lan-
guage models must use updated organizational data while correctly interpreting domain-
specific terminology that general-purpose systems frequently misunderstand [10]. Second,
organizations operate under strict regulatory frameworks that impose additional compli-
ance requirements (e.g., finance, healthcare, and human resources information).

In this context, Retrieval-Augmented Generation (RAG) [11] and prompt engineer-
ing [12] can help address these obstacles. RAG connects model outputs to authoritative
source documents. Prompt engineering shapes how queries are constructed and how
responses are formatted, which improves both accuracy and completeness [13].

This work presents our implementation of RAG and prompt engineering in Selene, a
chatbot originally developed using GPT-4 [14]. The Selene chatbot delivers behavioral anal-
yses and actionable recommendations to support organizational development initiatives.
To keep the chatbot updated with the latest information, we use an automated Extract,
Transform, and Load (ETL) process [15] that refreshes the knowledge base daily. We present
an overview of the system in Figure 1.

‘ =0 Search relevant
— information
Vector Matching Vector Search
(Prompt + context) Knowledge
Base
' Request
Context
. Prompt ,/ | User
P ChatBot I Interace

‘ Show Answer

Figure 1. Overview of the Selene Chatbot within a SaaS platform for behavioral analysis. First,
users submit queries through the web interface, which forwards requests to the chatbot microservice.
GPT-4 with function calling then determines what information is needed to answer the query. The
system retrieves relevant documents with a vector similarity search in the knowledge base. The
system combines this retrieved context with the original query to create the final prompt, and GPT-4
generates a response grounded in the retrieved information.

We were motivated by three main challenges in this multi-tenant SaaS deployment.
The chatbot lacked an automated mechanism to update its knowledge base, resulting in
responses based on outdated information. It also struggled with domain-specific termi-
nology and concepts unique to behavioral safety analysis, limiting its ability to provide
accurate and professionally appropriate responses. Furthermore, the final chatbot version
required proper role-based access control (RBAC) to ensure that the RAG pipeline did not
retrieve forbidden information.

Thus, this paper contributes to the literature by presenting a case study on the integra-
tion of RAG and prompt engineering in a production behavioral safety platform. Rather
than a controlled research experiment, we document the practical challenges and design
decisions involved in deploying conversational Al in a specialized enterprise domain. Our
contributions are twofold: (1) we demonstrate how automated knowledge maintenance
combined with RAG can serve domain-specific information and (2) we provide evaluation

Knowledge 2025, 5, 25

30f20

baselines and practical insights for practitioners facing similar deployment contexts. We
focus on documenting real-world implementation decisions, identified failure modes, and
lessons learned rather than comparing architectural alternatives, which, while valuable for
future research, exceeded the scope of this organizational deployment.

Section 2 gives a summary of work related to chatbot development, RAG, and prompt
engineering. Section 3 gives a summary of our methodology. Section 4 provides the de-
tails of the ETL process, prompt engineering patterns, and the RAG pipeline. Section 5
shows the results of our evaluation. Section 6 discusses the findings and lessons learned.
Finally, Section 7 closes by presenting the conclusions and exploring possible future
research directions.

2. Background and Related Work
2.1. Chatbot Development

Chatbots have attracted interest from both academia and industry in the past few
years due to the advent of LLMs improving their interaction capabilities [1,16]. Historically,
ELIZA [17] and ALICE [18] were among the first chatbot systems that utilized simple
pattern matching and rule-based methods to simulate conversations. However, these
methods faced issues with scalability and applicability across many domains [2].

In contrast, recent years have seen the rise of deep learning and neural networks,
which has revolutionized the construction of chatbots. Currently, systems can utilize
LLMs such as GPT [19], BERT [20], and their derivatives [21]. Following training on large
datasets of text, these models are capable of generating coherent and contextually relevant
responses [22]. Researchers have evaluated different architectures and methodologies to
enhance chatbot performance, including attention mechanisms [23], memory networks [24],
and reinforcement learning [25].

2.2. Retrieval-Augmented Generation

RAG systems combine retrieval-based and generation-based methodologies for NLP
tasks [11]. In particular, these systems have a component that retrieves relevant elements
from an outside knowledge source—the knowledge base—and a generative model that
uses the aforementioned elements as additional contextual information to create the final
output [26].

RAG has been employed in several tasks, including question answering [11], dialogue
generation [27], and summarization [28]. In these tasks, RAG models provide more precise
responses than models that rely solely on generation-based techniques, as they incorpo-
rate external knowledge [11]. The effectiveness of RAG is influenced by the quality and
relevance of the retrieved data.

Table 1 shows some use cases of RAG and compares them with our case study. Recent
advancements have extended RAG beyond research-oriented systems to specialized en-
terprise domains defined by stringent accuracy and compliance standards. Hu et al. [29]
studied the risks of LLM-generated content and showed that false information can be cate-
gorized as more relevant, making it harder to keep information accurate. Hang et al. [30]
developed a graph-based RAG utilizing semantic knowledge graphs that are continually
updated to verify medical claims.

Knowledge 2025, 5, 25

4 0f 20

Table 1. Comparison of RAG implementations.

Approach Retrieval Method Knowleflge Domain Specificity = Production Status
Integration
Lewis et al. [11] Dense retrieval Neural retriever with General-purpose QA Research prototype
’ Wikipedia index
DPR [31] Dense dual-encoder BERT—based passage Open-domain QA Research, widely
retrieval adopted
Dense with Joint
REALM [32] . retriever—encoder General NLP tasks Research prototype
pre-training .
pre-training
Medical knowledge .
MedGraphRAG [33] Graph-based method graphs Healthcare domain Research prototype
Vector search with Production
This work Dense with HNSW dynamic ETL Behavioral safety
deployment

synchronization

While these examples demonstrate the effectiveness of RAG in general contexts, our
case study in behavioral safety analysis in an SaaS environment has domain-specific require-
ments beyond those found in general-purpose question-answering systems and enterprise
applications. First, temporal evaluation tracking must distinguish between current worker
status and historical worker information while maintaining context across multi-turn inter-
actions. Second, the system must understand how to navigate the hierarchical structures
(e.g., how departmental structures and supervisory relationships affect the semantic inter-
pretation of queries). In this context, our platform implements RBAC through backend
authentication before queries reach the RAG pipeline. Third, the interpretation of nu-
merical thresholds must categorize continuous safety probability values into meaningful
intervention levels with appropriate recommendations.

2.3. Prompt Engineering

Prompt engineering is the process of designing and refining input prompts to steer
language models toward the desired outputs [12]. This process has become standard to
use with pre-trained LLMs such as GPT-3 [34] and its successors, which can be adapted to
different tasks using prompt engineering [13].

Researchers have examined various prompt engineering methodologies, including
manual prompt design [35], automated prompt search [36], and continuous prompt opti-
mization [37]. Moreover, empirical evidence shows that prompt design has a significant
effect on the quality and relevance of the outputs of the models. Prompt design includes
formatting [38] and the integration of domain knowledge and examples [39].

Moreover, we note that in our particular case, behavioral safety domains require
interpreting numerical thresholds to handle the safety probability levels of the workers,
where values are categorized into Low, Medium-Low, Medium-High, and High ranges
with specific implications for organizational intervention strategies. In addition, the man-
agement of temporal context must maintain awareness of evaluation periods to keep track
of historical worker information. Also, the navigation of the hierarchical organizational
structure requires prompts that enable the model to interpret organizational hierarchy and
roles correctly when formulating responses. Finally, the backend system enforces access
boundaries through authentication and authorization mechanisms.

Knowledge 2025, 5, 25

50f 20

2.4. Positioning This Work

Our work contributes a specialized case study in the behavior analysis domain. Our
novelty lies not in inventing new RAG mechanisms but in demonstrating their practical
integration in this specific case. Behavioral safety analysis in our specific case study
introduces requirements not addressed in general-purpose RAG implementations: strict
role-based access control preventing users from accessing information across organizational
boundaries, temporal evaluation tracking spanning months or years while keeping up
with updated data requirements, and multi-level organizational hierarchy navigation
where access permissions vary by role. We document how RAG and prompt engineering
address these requirements in production, providing insights for practitioners deploying
similar systems.

3. Methodology

Our approach takes elements from the Generative Al Project Life Cycle Framework
described by Fregly et al. [40] into an iterative incremental software development pro-
cess. In particular, the process included the following phases: data preparation, model
experimentation, prompt engineering, evaluation, and deployment.

3.1. Requirements Engineering and Analysis

We started with the requirements engineering process to define the scope and re-
quirements of the new chatbot version [41]. First, we identified the three key stakeholders
that were required to define the needs of the system: the CEO, the CTO, and an expert in
behavioral analysis. Through collaborative meetings, we were able to gather needs and
learn about the issues with the pre-existing implementation of the chatbot that did not
employ RAG or the right prompt engineering through.

Requirements engineering revealed three main challenges: First, the chatbot lacked an
automated system to update or incorporate new data into its model, resulting in outdated
information being provided to the user. Furthermore, the system could not handle queries
involving domain-specific terms or organizational processes and it lacked proper data
isolation, allowing access to data across client organizations, which needed to be corrected
before properly using RAG.

3.2. Infrastructure Analysis

We examined the current architecture of the system and its underlying GPT-4 model
to understand its capabilities and limitations. Specifically, the system operated through
a microservices architecture, which allowed the interaction between the chatbot compo-
nent and other components such as production databases, external Al services, and the
web frontend.

In the basic implementation, the chatbot consumed information from CSV files con-
taining all evaluations performed by client organizations (i.e., a preliminary form of RAG).
To implement proper RAG, we explored the options provided by Microsoft Azure solutions,
as Pignus had access to this infrastructure. In particular, we ended up selecting Azure
Cosmos DB, which provides capabilities for storing and managing vectors essential for
representing documents mathematically using embeddings [42].

3.3. Proposed Solution

Our solution considers three key components: ETL, prompt engineering, and RAG.
Figure 2 presents the proposed system’s architecture. The ETL pipeline extracts worker
evaluations and relevant documentation from the MySQL database. Then, it transforms
the content through normalization and embedding generation. Then, the content is loaded

Knowledge 2025, 5, 25

6 of 20

into Azure Cosmos DB with vector indexing, allowing it to be used in conversations. User
queries flow from the user interface through the Flask API to GPT-4, which then uses
function calling to retrieve relevant context through vector similarity search. The generated
responses are logged and returned to users through the web interface.

ETL Pipeline (Daily) Query Processing (Real-time)
User
(Web UI)
MySQL
Production DB
1. Query
Flask API
=1 ey o |
tract
Query Router
2. Request \
Transform GPT-4
(Normalize Azure 7. Response
OpenAl
Automated Daily Function

Calling
3. Search

Vector Enhanced
Similarity Prompt

Search Generation
(Query +
Context)

o

5. Context

i Embeddings) E

6.Log
Azure Cosmos DB 4 Retrieve
(Vector Index) AWS S3
______________________________ Conversation
Logs

Figure 2. System architecture of the Selene chatbot.

3.3.1. Component 1: Automated ETL Process

The first component addresses the use of obsolete information by the Selene chatbot
through an ETL process that runs daily. In particular, during the extraction phase, we
use the MySQL database to retrieve worker evaluation records, organizational structures,
and other documents that have been updated or created since the last update. After
this initial phase, the transformation phase normalizes the text (e.g., by eliminating ac-
cents and converting to lowercase) while keeping domain terminology via a protected
word list. During this phase, we also generate embedding representations using the
text-embedding-ada-002 model from OpenAl (San Francisco, CA, USA). We note that the
embeddings are then used for similarity search in the RAG component. Finally, the loading
phase updates Azure Cosmos DB in an incremental fashion, inserting new records created
since the last update and updating any modified entries.

3.3.2. Component 2: Prompt Engineering Patterns

The second component uses prompt engineering methods to ensure that the behavior
of the chatbot is appropriate based on the requirements analysis. In particular, we applied
several design patterns based on the work of Schmidt et al. [43]. First, the persona pattern
configures the model so that it takes the role of a professional behavioral safety assistant.
Next, the template pattern provides the model with structured frameworks to respond to
different query types, based on predefined types obtained from the requirements engineer-

Knowledge 2025, 5, 25

7 of 20

ing process. Furthermore, the context manager pattern maintains conversation coherence
across multiple exchanges. Finally, the input semantics pattern defines guidelines to help
handle numerical thresholds and temporal references.

We show general examples of prompt-engineering techniques in Figure 3. Several
prompt design patterns were applied to improve the interaction with the model [43],
including the persona pattern, template pattern, context manager, and input semantics
patterns. These patterns help establish the chatbot’s role, provide structured frameworks
for queries, maintain conversation coherence, and define clear guidelines for data input.

Itis a process that allows the text
to be structured so that it is
understood by the Al

! ! !

Zero Examples One Example Multiple Examples
‘ : : Example: “I loved this movie”. Example 1: “| loved”. Sentiment:
F:r:vrir;p\);: Slzll?)?/sel(ijt:]ri“ss Sentiment: Positive Positive
rﬁoviel” Prompt: “l don't like this movie”. Example 2: “I don't like this song”
: Sentiment: Sentiment: Negative
Prompt: “I don't like the coffee”.
Sentiment:

Figure 3. Prompt engineering examples for zero-shot, one-shot, and few-shot prompting.

3.3.3. Component 3: Retrieval-Augmented Generation

The third component employs RAG to enable the chatbot to retrieve relevant infor-
mation from an external knowledge base and incorporate it into the generated responses.
The retrieval mechanism uses vector similarity search with HNSW indexing and cosine
distance metrics to identify relevant documents. The retrieved context includes both orga-
nizational evaluation data and platform documentation, filtered according to the user’s
organizational role and access permissions. The generation phase combines the informa-
tion recovered with the prompt engineering patterns to produce accurate and contextually
appropriate responses.

4. Implementation
4.1. ETL Process Implementation

The extraction phase considers multiple data sources, including a MySQL library,
worker information, evaluation data for both supervisors and operators, and organizational
hierarchical structures. We also extracted relevant information from the help section of the
platform itself, which contained HTML files, videos, and PDFs. We converted all HTML files
and video transcripts to plain text, while processing PDF files using the PyMuPDF library.

The automated ETL process directly addresses the stale information challenge iden-
tified during requirements engineering. We run the process daily during off-peak hours.
During the extraction process, the system queries the MySQL production database for
evaluation records modified since the last ETL execution, checks the platform help docu-
mentation directory for new or modified files based on file modification times, and retrieves
any content that has been modified. The transformation phase generates fresh embeddings
for the updated content, which avoids unnecessary API calls for unchanged data. The load-

Knowledge 2025, 5, 25

8 of 20

ing phase performs incremental updates to Azure Cosmos DB collections, inserting new
records and updating modified entries while preserving unchanged data. This incremental
approach keeps the chatbot operating on current organizational data without full database
rebuilds. The ETL execution history is logged to enable troubleshooting and to monitor
data currency.

The transformation phase standardized the extracted data. First, all text data undergo
normalization, including the removal of accents (e.g., ‘informacién’ becomes ‘informacion’,
meaning ‘information’ in Spanish), conversion to lowercase for case-insensitive match-
ing, and elimination of unnecessary spaces while preserving domain-specific terminology
through a protected term list, which were part of a specialized terminology glossary devel-
oped collaboratively with behavioral safety experts during the requirements engineering
phase of the project. Temporal data are converted to UTC format with timezone meta-
data preservation. The transformation process also includes semantic enrichment through
embedding generation using OpenAl’s text-embedding-ada-002 model, which produces
1536-dimensional vectors. Furthermore, function calling schemas were designed for the
three organizational user role levels (Administrator, Multi-Company, Single-Company),
and prompt engineering patterns encoded behavioral safety evaluation frameworks and
competency definitions.

The loading phase populates Azure Cosmos DB for MongoDB vCore with the trans-
formed data. The database schema is designed to support efficient vector similarity search
using Hierarchical Navigable Small World (HNSW) indexing with cosine similarity as the
distance metric, enabling fast approximate nearest neighbor search with cosine similarity
as the distance metric. Each document in the database includes the original text content,
the embedding vector, metadata for filtering (e.g., organization ID and user access level),
and temporal information for tracking data currency.

4.2. Prompt Engineering Patterns

Our prompt engineering implementation follows Schmidt et al.’s [43] categorization.
Based on the general prompt engineering patterns shown in Figure 3, we develop multiple
prompts to address a diverse range of user queries. Four main patterns were implemented
to guide the behavior of the chatbot and ensure appropriate responses. We note that these
patterns were validated by the organizational stakeholders as part of the development
process. Table 2 shows example prompts.

Table 2. Example prompts for chatbot evaluation (summarized due to confidentiality restrictions).

PromptID Prompt Text

P1 “Your name is Selene, you are a virtual assistant...”

P “The probability of safe working conditions is a decimal number between
0 and 1. The levels are: ...”

P3 “The competencies for supervisory workers are: ..."

P4 “The function ...allows you to obtain information about the workers in
the following way: ...”

pP5 “The function ...allows you to consult the administration of ...”

P6 “For the response of the function ..., you must indicate where the
information is located”

4

The persona pattern configures the Selene chatbot to assume the role of a virtual
assistant and expert in behavioral safety analysis. Furthermore, we configure the chatbot to
ensure that it uses a professional and friendly tone. This affects the style and content of
the answers, ensuring that they are all consistent for all types of questions. The persona
definition includes clear limits and boundaries for what information can be accessed and

Knowledge 2025, 5, 25

9 of 20

what medical or legal advice can be given. For example, a persona cannot access data
outside of their assigned organizational boundaries.

The template pattern provides structured frameworks for the chatbot to use in different
query types. We defined different templates for statistical queries, individual worker
queries, comparative analyzes, and procedural guidance. The system then automatically
selects the appropriate templates based on the type of query from the predefined templates.

The context manager pattern helps the chatbot maintain conversations coherent and
continuous by keeping track of previous dialogue exchanges and user preferences. In
particular, this pattern manages context using a sliding window approach with retention
based on relevance. Through this approach, only the most relevant information is kept
within the token limit of the underlying LLM.

The input semantics pattern establishes rules and formats for input data, including
formal specifications of domain entities such as workers, evaluations, and competencies.
These patterns define metrics such as the probability of safe work, which ranges from 0 to 1
and is categorized into four levels: Low [0-0.25), Medium-Low [0.25-0.5), Medium-High
[0.5-0.75), and High [0.75-1.0].

4.3. RAG Pipeline Implementation

We implemented the RAG pipeline to retrieve relevant information from the knowl-
edge base for query responses. The pipeline operates in five steps, illustrated in Figure 4.

User Step 1: User
(Web Interface) | submits query

Step 2: Determine
information needs

Flask API (1o 1P Response
(Receives Query) Func'tlon Generate to User
Calling Response

Step 5: Deliver
response

Step 4: Integrate

context manced
4 » Prompt (Query
Retrieved Docs \/ + Context)

I
Step 3: Retrieve relevant documents 1
1
v
AWS S3
Conversation
Logs

Azure Cosmos DB
Vector Similarity
Search (HNSW)

Figure 4. Five-step RAG pipeline. Users submit queries, GPT-4 function calling determines informa-
tion needs, vector similarity search retrieves relevant documents from the knowledge base, context
integrates with the prompt, and GPT-4 generates and delivers the response.

4.3.1. First Step: Query Reception

Once the system receives a query through the frontend, the Flask API microservice
relays the request to the backend. The system validates the authentication token, extracts
the user’s basic information (identity and organizational role), and then logs the query for
audit purposes. The underlying language model and the RAG pipeline (if required) can
now proceed to handle the query.

4.3.2. Second Step: Function Calling

In particular, the system uses GPT-4’s function calling feature to determine what
information it needs to answer the question. More specifically, the model examines the

Knowledge 2025, 5, 25

10 of 20

query and chooses whether to use the predefined functions to get the needed information
from the production database and/or the knowledge base, letting the model take into
account additional information in their context window. The function calling approach was
configured through prompt engineering patterns that established response formats and
calling methods. Furthermore, we note that the chatbot respects role-based permissions
(Administrator, Multi-Company, and Single-Company users) with different access levels
within the platform.

4.3.3. Third Step: Vector Similarity Search

The system retrieves relevant documents by using a vector similarity search in the
knowledge base. The system generates an embedding vector for the query using the
same text-embedding-ada-002 model used during ETL transformation. This embedding
queries Azure Cosmos DB with HNSW indexing. The search retrieves the most relevant
documents based on cosine similarity. The system enforces role-based access control
through backend authentication and authorization mechanisms before queries reach the
retrieval pipeline. JSON Web Token validation extracts the user identity and organizational
role, ensuring that users can only access information within their authorized scope. This
architectural decision prevents cross-organizational information leakage at the system level
instead of relying on retrieval-time filtering.

4.3.4. Fourth Step: Context Integration

The system now integrates the retrieved context with the original query to create
an enhanced prompt. The system combines the user’s question, relevant retrieved docu-
ments, function call results, and prompt engineering patterns into the final prompt for the
generation model, which provides GPT-4 with all the necessary context.

4.3.5. Fifth Step: Response Generation

The final step uses GPT-4 to generate the response. The response is then delivered
to the user via the Flask API to the web interface for display purposes. We note that
the generated response is logged into AWS S3 to track conversation history tracking for
audit purposes.

4.3.6. Failure Modes and Error Pattern Analysis

We analyze the behavior of the system to identify relevant failure patterns. We note
that contextual precision failures occurred in 5 test cases (approximately 22%), where
the system retrieved relevant background information but failed to surface specific data
points needed for precise answers. For example, when queried about a worker’s exact
competency score, the system sometimes retrieved general documentation about the com-
petency framework without the evaluation of the specific individual that was requested.
Contextual relevancy failures occurred in seven cases (approximately 30%), which involved
the retrieval of tangentially related but not directly applicable information. This pattern
appeared most frequently with multi-dimensional queries that needed the navigation of
hierarchical organizational structures. For example, queries about specific departments
within subsidiary companies sometimes retrieved information about other departments or
parent company data. Hallucinations occurred in two cases (approximately 9%), where the
model generated factually incorrect information that was not supported by the retrieved
context. In both instances, the queries requested specific numerical values that were not
present in the retrieved documents. The vector similarity search retrieved documents
containing related information, but did not include any document that allowed the sys-
tem to respond to the query correctly. However, rather than acknowledging that it had

Knowledge 2025, 5, 25

11 of 20

insufficient information, the model attempted to generate an answer anyway, resulting
in hallucinations.

4.3.7. Architecture and Performance Characteristics

We note that in the current implementation of the RAG pipeline, each user query
triggers a complete pipeline execution. Thus, additional engineering work for production
scaling, such as latency improvements through caching strategies, API orchestration opti-
mization with parallel function calls, and connection pooling represent, remain beyond the
scope of this case study.

5. Results and Evaluation
5.1. Evaluation Methodology

We evaluated the enhanced Selene chatbot using automated DeepEval metrics [44]
followed up by organizational qualitative validation. The evaluation assessed both technical
performance of the RAG pipeline and the perception of key stakeholders from Pignus.

5.1.1. Evaluation Tools

We considered LangChain [45], MLflow [46], and DeepEval [44] as evaluation alterna-
tives. The first approach that we considered was LangChain [45] for managing language
model applications, but we rejected it due to costs and mandatory dependencies that were
not aligned with the project requirements. We then considered MLflow [46], which is a
library focused on machine learning experiment management. However, it lacked the
specific and functional metrics required for chatbot evaluation. We ultimately selected
DeepEval [44], an open-source evaluation framework designed for language models with
built-in RAG support, due to its range of metrics designed for language models, including
precision, coherence, hallucination, and relevance.

5.1.2. Evaluation Process

To test our model, we designed two sets of queries along with their expected output.
The first set of queries was designed to assess the quality of the RAG pipeline, while the
second set of queries was designed to evaluate the general response quality. The com-
plete evaluation set comprises 23 test cases based on frequently asked questions that were
identified during the requirements engineering process with the help of organizational
stakeholders. We note that the platform processes an average of about 230 individual
worker evaluation reports monthly based on 2023 operational data, providing the un-
derlying data pool for chatbot queries. The knowledge base includes worker evaluation
records that span multiple months, organizational hierarchical data that define company
structures and access relationships, and platform documentation that covers system usage
and behavioral safety concepts.

Each test case includes five components: an input query representing actual user
information needs, an expected output validated by domain experts from the organiza-
tion defining the correct response, an actual output generated by the enhanced chatbot,
retrieval context showing what documents were retrieved from the knowledge base, and
conversation context capturing relevant prior exchanges in multi-turn interactions. Thus,
the fields employed for the use cases were as follows:

¢ input: This element corresponds to the question asked by the user.

* expected_output: This element corresponds to the expected answer.

* actual_output: This element corresponds to the actual answer generated by the chatbot.
* retrieval context: This element corresponds to the context of the RAG.

* context: This element corresponds to the additional data received by the LLM.

Knowledge 2025, 5, 25

12 of 20

To obtain the input and expected output fields, the datasets were iterated over. The
actual _output was generated by invoking the model to produce a response. The re-
trieval _context was acquired from the files stored in the database used to apply RAG,
while the context was set according to the additional data. We show examples of user
queries used throughout the evaluation process in Table 3. We note that we had a total of
23 different test cases in the evaluation.

Table 3. Example evaluation queries. Queries modified to preserve company confidentiality.

Test Cases Example Expected Response

T1: Help with area management To manage the company’s areas, use the sidebar

and follow these steps: ...”
. “There are ... workers who have a safe work
T3: Safe work analysis . ,
probability at level ...
. “There are ... workers who have competence ...at
T4: Competence analysis level .. "
T5: Safest worker evaluation ' Theﬂworker with the highest safe work probability

is ...
“Th 1 f i

T6: Most developed competence he most developed competence for workers is

“The information of the worker with ID number

...is as follows: ...”

T8: Worker evaluation history “The evaluation history of the worker .. .is: ...

T7: Specific worker query

”

5.1.3. Evaluation Metrics

DeepEval provides eight evaluation metrics that assess different aspects of chatbot
performance. The metrics are evaluated on a scale from 0 to 1, with higher scores indicating
better performance. The results are categorized according to the organizational stan-
dards used for the evaluation of behavioral competence across the platform: Low [0-0.25),
Medium-Low [0.25-0.5), Medium-High [0.5-0.75) and High [0.75-1.0]. We note that these
categories are aligned with the usual terminology of the organizational stakeholders.

We first describe the general evaluation metrics that assess response quality without
considering the RAG pipeline and additional context:

* Answer Relevancy: Measures the quality and relevance of the response to the question,
ensuring relevant and useful answers [42,47].

* Bias: Detects biases in the response (e.g., gender, racial, or political), ensuring impartial
and fair answers [48,49].

* Toxicity: Identifies toxic elements in the response (e.g., mockery, hatred, disdainful
statements, or threats), maintaining safe and respectful interactions [49].

Next, we consider metrics that evaluate RAG pipeline quality. Some resemble tradi-
tional information retrieval metrics, such as precision and recall.

* Faithfulness: Evaluate whether the generated responses remain faithful to the retrieval
context, ensuring accurate and reliable information [42,50].

* Contextual Precision: Measures the contextual precision of each element in the retrieval
context based on the expected response, ensuring the chatbot uses the most relevant
context information [42].

¢ Contextual Recall: Evaluates the model’s ability to retrieve information aligned with
the expected response and retrieval context, preventing omission of important infor-
mation [42].

* Contextual Relevancy: Measures the relevance of the information in the retrieval
context based on the question, ensuring coherent responses [42].

Knowledge 2025, 5, 25

13 of 20

¢ Hallucination: Detects factually incorrect information or fabricated information by
comparing it with the actual response and the context provided, preventing misleading
responses [51].

After defining the evaluation metrics, we executed the tests and stored the results in
two CSV files for analysis.

5.2. Evaluation Results

Table 4 presents the Selene chatbot. Figure 5 visualizes evaluation metrics across all
23 test cases. Answer relevancy and faithfulness show consistently high scores across
most test cases, while contextual precision shows more variation, indicating opportunities
for retrieval optimization. Thus, our RAG implementation showed promising results in
enhancing the chatbot’s ability to provide accurate and context-specific responses.

Table 4. Results of the RAG pipeline according to different metrics.

Metrics Low Medium-Low Medium-High High
Answer Relevancy 0 3 2 18
Faithfulness 1 0 0 22
Contextual Precision 5 10 2 6
Contextual Recall 6 0 1 16
Contextual Relevancy 7 0 0 16
Hallucination 2 0 0 21
Bias 0 0 0 23
Toxicity 0 0 0 23

With respect to the general evaluation metrics, the chatbot achieved perfect scores
(23/23 High) in terms of bias and toxicity issues, showing no problems in both categories.
Thus, the prompt engineering patterns that were applied helped the chatbot maintained
a professional and neutral tone across all responses. Furthermore, faithfulness scores
were also high, with 22 of 23 test cases (96%) achieving High scores. The only Low score
(T15) occurred when the model generated information that was not fully supported by
the retrieved context. Answer relevancy presented slightly more mixed results, with 18
of 23 cases (78%) achieving High scores, while 3 cases scored Medium-Low and 2 scored
Medium-High. This shows that the model generally provided relevant responses, although
occasional deviations occurred.

We now present the results of the RAG evaluation metrics. First, contextual precision
presents the most challenges, as only 6 of 23 cases (26%) achieving High scores. The
distribution shows 5 Low, 10 Medium-Low, and 2 Medium-High scores, which shows that
the retrieval mechanism frequently retrieves relevant information but does not always
rank the information optimally. Contextual recall performs better, with 16 of 23 cases
(70%) achieving High scores, although 6 cases scored Low. These results suggest that
the system can generally retrieves the necessary information, but will occasionally miss
relevant documents. Contextual relevancy scored high in 16 test cases (70%) but failed in
7 instances (30%), indicating that retrieval sometimes identified tangentially related rather
than directly applicable information. In the T20 and T21 cases, the contextual precision
was lower than in the other cases (i.e., the retrieval context lacked the specific information
required to answer). Comparing expected and actual responses for these cases revealed
that the language model tends to generate more extensive responses. Furthermore, in
the case of T20, this led the system to attempt to generate answers that hallucinated the
missing data.

Only two test cases (T17 and T20, approximately 9%) presented hallucination issues.
In these cases, the hallucinations occurred because the chatbot could not find the required

Knowledge 2025, 5, 25

14 of 20

information to respond directly from the given context or failed to provide the requested
information despite correctly identifying the worker and the company in internal functions.
Rather than acknowledging insufficient information, the model attempted to generate
responses anyway, resulting in factually incorrect output.

Heatmap of Metrics by Test Case

-1.0

-0.8

0.6

0.4

0.2

0.0

Metrics

Figure 5. Heatmap visualization of evaluation metrics across all 23 test cases. Color scale: dark
purple (0.0-0.2) represents Low performance, purple-pink (0.2-0.4) Medium-Low, orange (0.4-0.6)
Medium-High, light orange (0.6-0.8) High, and white (0.8-1.0) Very High performance. Black cells
indicate non-applicable metrics. Rows show individual test cases (T1-T23); columns show the eight
evaluation metrics.

5.3. Organizational Validation

In addition to the quantitative measures from the preceding section, we validated that
the enhanced chatbot met business requirements with the aforementioned key organiza-
tional stakeholders. In particular, Pignus’ key stakeholders (CEO, CTO, and Behavioral
Safety Specialist) participated throughout development, providing domain expertise and
validating the system. All three stakeholders validated the chatbot’s improvements, noting
substantial gains in domain knowledge accuracy and response relevance compared to the
baseline system.

Furthermore, multi-turn conversation sequences showed the effectiveness of the
context manager pattern. For example, consider a representative interaction (constructed
from typical usage patterns): A user could ask “How many workers have high safe work
probability?” and they would get a reply like, “In Company A, 47 people have a high
safe work probability (0.75-1.0). Do you want more information about a specific area or
department?” Then, the user could ask, “Who is the least safe worker?” and the system
would have to understand that the user is asking for a person in the previously mentioned
company (i.e., keeping the context). Thus, the system should provide a response such as
“The worker with the lowest safe work probability in Company A is Worker_X with a score

Knowledge 2025, 5, 25

15 of 20

of 0.78. While still in the High category, this worker shows opportunities for improvement
in analytical capacity and communication effectiveness.”

We note that this validation method has some issues. First, these stakeholders were
directly involved in the development process and had a vested interest in the system’s
success. Furthermore, this validation occurred during the pilot deployment with limited
real-world usage. Thus, instead of assessing user adoption or satisfaction, we focused
on showing technical feasibility. Subsequent studies would need to include assessments
conducted by independent experts using blinded comparison techniques. However, such
an evaluation was considered to be outside of the scope of this case study.

6. Discussion

Our results have shown that the system successfully provides accurate and contex-
tually appropriate responses based in organizational data. We managed to eliminate bias
and toxicity through prompt engineering patterns, effectively maintaining professional
standards in the responses generated by the chatbot. However, the system showed issues
with contextual precision. Thus, while the retrieval pipeline generally finds relevant infor-
mation, it does not always retrieve the best documents for answering queries, particularly
in queries requiring specific numerical values or detailed evaluations, where the system
sometimes retrieved general background information rather than exact data points.

6.1. Deployment Characteristics and Scalability

The current production deployment costs approximately USD 70 per month, with
most allocated to Azure Cosmos DB storage and compute resources. The smaller portions
cover the usage of the Azure OpenAl API for embedding generation and completion
requests, and AWS S3 storage for conversation logging. This aggregate cost reflects the
currently limited scale of the first production pilot with limited concurrent users. We did
not instrument per-query cost attribution in the current implementation. We also did not
perform a detailed analysis of the memory consumption profile or latency during this case
study. Performance profiling with percentile-based latency distributions, memory usage
characterization under varying loads, and scalability testing represent important future
engineering work for production-grade deployment.

6.2. Lessons Learned and Recommendations

In terms of lessons that may benefit practitioners working on similar projects, we have
identified three key lessons. First, the requirements engineering process proved essential to
the project. We spent three weeks in the process of understanding stakeholder needs and
documenting domain-specific terminology. Identifying frequently asked questions during
the requirements elicitation process informed the design of test cases, ensuring that evalua-
tion focused on realistic cases rather than purely synthetic scenarios. Second, the selection
of appropriate evaluation metrics is necessary to properly understand system performance.
In this work, we used specialized RAG metrics from the DeepEval library. However, future
work should supplement these metrics with human evaluation approaches that include
blinded assessment. Third, our iterative development methodology enabled us to improve
our solution based on the feedback from the key stakeholders. In particular, we were able
to identify terminology and formatting issues with the generated responses early in the
development phase since we had regular feedback meetings with the relevant stakeholders.

6.3. Limitations

While our case study results are promising, there are several issues that need to be
examined as limitations.

Knowledge 2025, 5, 25

16 of 20

Evaluation Scale and Statistical Power. First, our 23 test cases have a limited statistical
power for generalization. These test cases were derived from frequently asked questions
identified during the requirements engineering process. However, while these examples
serve as useful as representative cases to test the RAG system, this approach does not have
the sufficient scale and coverage to obtain statistical conclusions about the performance of
the RAG system.

Language and Domain Constraints. The system primarily supports Spanish, hence
limiting its applicability in contexts that require additional languages. However, the under-
lying embedding model of the RAG pipeline is multilingual (text-embedding-ada-002)
and could support other common languages (e.g., English). However, we must note that
the prompt engineering and terminology handling would require substantial modifications
to be applicable in other languages or domains. Furthermore, we conducted the evaluation
entirely within a single organizational and cultural context, raising questions about gener-
alization to different industries, organizational structures, or regulatory environments.

Baseline Comparison Absence. We do not perform comparisons against baseline
architectures such as LLM-only systems without RAG (beyond the key stakeholders’ per-
ception of improvement), traditional BM25 sparse retrieval methods, or hybrid approaches
combining BM25 with neural rerankers in our experiments. Such studies represent impor-
tant future work for validating RAG’s value proposition in this domain but exceeded the
scope of this organizational deployment case study.

Ablation Study Absence. We did not conduct ablation studies examining the impact
of individual design choices, including parameters such as chunk size or top-k, adding
query rewriting strategies, or using different embedding models, vector databases or
indexing algorithms. Performing these ablation studies would allow us to identify which
specific components drive performance and which represent over-engineering. However,
we considered these to be outside of the scope of the current case study. Thus, ablation
studies represent important future research directions for optimizing RAG systems in
specialized domains.

Performance Profiling Gaps. We did not analyze latency profiles with percentile
distributions, memory consumption characterization under varying loads, or cost attribu-
tion per query type. We also did not perform formal scalability testing with stress testing
methodologies during this deployment. These performance metrics would be needed
for scaling up production capacity. However, they were considered out of scope for the
initial deployment. Performance engineering represents important future work for scaling
beyond the pilot deployment.

7. Conclusions

We presented a case study about the Selene chatbot development process in a SaaS
platform for behavioral safety analysis to improve its performance through RAG and
prompt engineering. This work demonstrated the practical application of RAG and prompt
engineering in a production environment. The lessons learned and identified patterns
provide guidance for organizations that deploy domain-specific chatbots.

Our analysis of results shows that the improved chatbot achieves a high performance,
with 78% high answer relevancy, 96% high faithfulness and a complete elimination of bias
and toxicity. Furthermore, the prompt engineering patterns used in this study (persona,
template, context manager, and input semantics) effectively helped the model generate
consistent and professional responses. While some challenges remain, the system was able
to provide valuable support for behavioral safety analysis tasks.

While our work shows the applicability of RAG in this domain, there are several
limitations to our study that should be addressed by future work. First, the evaluation

Knowledge 2025, 5, 25

17 of 20

should be expanded with extensive testing (e.g., 200-300 test cases generated through an
automated question generation model using query synthesis techniques), which would
allow us to report proper statistical information for the evaluation metrics. Once there
exists a sufficient deployment history, it would be useful to analyze specific capabilities of
the model by identifying the different types of queries logged by the system. Furthermore,
implementing blind human evaluation protocols with independent expert panels would
strengthen the methodology.

In addition, comparing with other baselines and performing ablation studies would
help evaluate the design decisions made during this study. Comparisons against LLM-
only systems without RAG, BM25 sparse retrieval, hybrid BM25 with neural reranking
approaches, and alternative vector databases could help quantify the value of our RAG
pipeline. Advanced retrieval techniques could be used to address the contextual precision
challenges identified in the evaluation.

Moreover, extending language support beyond Spanish would broaden the applicabil-
ity of the system. While the embedding model used in this work is multilingual, doing this
would require language-specific prompt engineering adaptation to maintain quality across
languages and cross-lingual retrieval evaluation methodologies. Furthermore, testing plans
for each target language would need to address culturally appropriate terminology usage
and response formatting conventions.

Performance engineering represents important work for scaling beyond pilot deploy-
ment. Implementing profiling with percentile-based latency tracking for the 50th, 90th, 95th,
and 99th percentiles, cost attribution per query type, response caching for frequent queries,
connection pooling for database and API services, and load balancing for concurrent user
scaling would enable production-grade deployment. Formal stress tests would establish
capacity limits and identify optimization priorities.

Advanced prompt engineering techniques could further enhance response quality.
Chain-of-thought reasoning for complex multi-step queries, automated prompt optimiza-
tion through reinforcement learning from human feedback, and self-consistency checking
mechanisms to detect potential hallucinations before response delivery represent promising
research directions.

Author Contributions: Conceptualization, R.P. and B.K.; methodology,].R., S.Z. and B.K; software,
J.R. and S.Z,; validation, J.R., S.Z. and R.P; formal analysis,].R. and S.Z.; investigation, J.R. and
S.Z.; resources, R.P,; data curation, J.R. and S.Z.; writing—original draft preparation, J.R. and S.Z.;
writing—review and editing, J.R., S.Z., R.P. and B.K,; visualization,].R. and S.Z.; supervision, B.K.
and R.P; project administration, B.K. and R.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially supported by Universidad Catélica del Norte through project 2023-
11010033-VRIDT-UCN. Pignus received infrastructure support through the Microsoft for Startups
Program. The APC was funded by Universidad Catolica del Norte.

Institutional Review Board Statement: This study did not require ethical review as it involved
technical evaluation of software performance using automated metrics (DeepEval framework). Orga-
nizational stakeholders participated as professional collaborators in software development, not as
research participants.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data cannot be made publicly available due to organizational confiden-
tiality agreements. Evaluation results are presented in full in the paper.

Acknowledgments: We would like to thank the Capstone Project Permanent Program at Universidad
Catdlica del Norte for providing the opportunity to conduct this applied research. We are grateful
to Pignus for their collaboration and support throughout this project, and we acknowledge the

Knowledge 2025, 5, 25 18 of 20

Microsoft for Startups Program for their ongoing support of Pignus’ technological and applied
research initiatives. This work was partially supported by the project 2023-11010033-VRIDT-UCN.

Conflicts of Interest: Ricardo Pizarro is the CTO of Pignus. The other authors declare that they have
no competing interests.

References

1. Felstad, A.; Brandtzeeg, P.B. Chatbots and the new world of HCI. Interactions 2017, 24, 38—42. [CrossRef]

2. Dale, R. The return of the chatbots. Nat. Lang. Eng. 2016, 22, 811-817. [CrossRef]

3. Hadi, M.U.; Tashi, Q.A.; Qureshi, R.; Shah, A.; Muneer, A.; Irfan, M.; Zafar, A.; Shaikh, M.B.; Akhtar, N.; Hassan, S.Z.; et al. A
survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Prepr. 2025. [CrossRef]

4. Chiu, Y.Y,; Sharma, A ; Lin, LW,; Althoff, T. A Computational Framework for Behavioral Assessment of LLM Therapists. arXiv
2024, arXiv:2401.00820. [CrossRef]

5. Kim, M.; Lee, H.; Park, J.; Lee, H.; Jung, K. AdvisorQA: Towards Helpful and Harmless Advice-seeking Question Answering
with Collective Intelligence. arXiv 2024, arXiv:2404.11826.

6. Aggarwal, A;; Tam, C.C.; Wu, D.; Li, X; Qiao, S. Artificial intelligence-based chatbots for promoting health behavioral changes:
Systematic review. J. Med. Internet Res. 2023, 25, e40789. [CrossRef]

7. Cooper,].O.; Heron, T.E.; Heward, W.L. Applied Behavior Analysis; Pearson/Merrill-Prentice Hall: Upper Saddle River, NJ, USA,
2007; Volume 2.

8. Fisher, WW.,; Piazza, C.C.; Roane, H.S. Handbook of Applied Behavior Analysis; Guilford Publications: New York, NY, USA, 2021.

9. Mayer, G.R;; Sulzer-Azaroff, B.; Wallace, M. Behavior Analysis for Lasting Change; Sloan Pub.: Collinsville, IL, USA, 2012.

10. Chen, H,; Liu, X;; Yin, D.; Tang, J. A survey on dialogue systems: Recent advances and new frontiers. ACM SIGKDD Explor. Newsl.
2017, 19, 25-35. [CrossRef]

11. Lewis, P; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Kiittler, H.; Lewis, M.; Yih, W.t.; Rocktdschel, T.; et al.
Retrieval-augmented generation for knowledge-intensive nlp tasks. Adv. Neural Inf. Process. Syst. 2020, 33, 9459-9474.

12. Liu, P; Yuan, W.; Fu, |; Jiang, Z.; Hayashi, H.; Neubig, G. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. ACM Comput. Surv. 2023, 55, 1-35. [CrossRef]

13. Gao, T;; Fisch, A.; Chen, D. Making Pre-trained Language Models Better Few-shot Learners. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Online, 1-6 August 2021; pp. 3816-3830.

14. Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, FL.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al.
Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [CrossRef]

15. Nwokeji,].C.; Matovu, R. A systematic literature review on big data extraction, transformation and loading (etl). In Intelligent
Computing, Proceedings of the 2021 Computing Conference, Volume 2, Virtual, 15-16 July 2021; Springer: Cham, Switzerland, 2021;
pp- 308-324.

16. Dam, SK.; Hong, C.S.; Qiao, Y.; Zhang, C. A complete survey on llm-based ai chatbots. arXiv 2024, arXiv:2406.16937.

17. Weizenbaum, J. ELIZA—A computer program for the study of natural language communication between man and machine.
Commun. ACM 1966, 9, 36-45. [CrossRef]

18. Wallace, R.S. The Anatomy of ALICE; Springer: Berlin/Heidelberg, Germany, 2009.

19. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAl
blog 2019, 1, 9.

20. Kenton, . D.M.W.C,; Toutanova, L.K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2-7 June 2019; pp. 4171-4186.

21. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA,
6-9 May 2019.

22. Gao,].; Galley, M,; Li, L. Neural approaches to conversational Al In Proceedings of the 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8-12 July 2018; pp. 1371-1374.

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit,].; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 6000-6010. [CrossRef]

24. Sukhbaatar, S.; Szlam, A.; Weston, J.; Fergus, R. End-to-end memory networks. Adv. Neural Inf. Process. Syst. 2015, 28, 2440-2448.
[CrossRef]

25. Li, J.; Monroe, W,; Ritter, A.; Galley, M.; Gao, J.; Jurafsky, D. Deep reinforcement learning for dialogue generation. arXiv 2016,

arXiv:1606.01541. [CrossRef]

http://doi.org/10.1145/3085558
http://dx.doi.org/10.1017/S1351324916000243
http://dx.doi.org/10.36227/techrxiv.23589741.v8
http://dx.doi.org/10.48550/arXiv.2401.00820
http://dx.doi.org/10.2196/40789
http://dx.doi.org/10.1145/3166054.3166058
http://dx.doi.org/10.1145/3560815
http://dx.doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.1145/365153.365168
http://dx.doi.org/10.5555/3295222.3295349
http://dx.doi.org/10.5555/2969442.2969512
http://dx.doi.org/10.48550/arXiv.1606.01541

Knowledge 2025, 5, 25 19 of 20

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Izacard, G.; Grave, E. Leveraging passage retrieval with generative models for open domain question answering. arXiv 2020,
arXiv:2007.01282.

Zhang, Y.; Sun, S.; Galley, M.; Chen, Y.C.; Brockett, C.; Gao, X.; Gao, J.; Liu, J.; Dolan, W.B. DIALOGPT: Large-Scale Generative
Pre-training for Conversational Response Generation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, Online, 5-10 July 2020; pp. 270-278.

Fan, A.; Gardent, C.; Braud, C.; Bordes, A. Using Local Knowledge Graph Construction to Scale Seq2Seq Models to Multi-
Document Inputs. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and 9th
International Joint Conference on Natural Language Processing, Hong Kong, China, 3-7 November 2019.

Hu, B.; Sheng, Q.; Cao, J.; Li, Y.; Wang, D. LIm-generated fake news induces truth decay in news ecosystem: A case study on
neural news recommendation. In Proceedings of the 48th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Padua, Italy, 13-18 July 2025; pp. 435-445.

Hang, C.N.; Yu, P.D.; Tan, C.W. TrumorGPT: Graph-Based Retrieval-Augmented Large Language Model for Fact-Checking. IEEE
Trans. Artif. Intell. 2025, 1-15. [CrossRef]

Karpukhin, V.; Oguz, B.; Min, S.; Lewis, P; Wu, L.; Edunov, S.; Chen, D.; Yih, W.t. Dense Passage Retrieval for Open-Domain
Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Online, 16-20 November 2020; pp. 6769-6781.

Guu, K; Lee, K,; Tung, Z.; Pasupat, P.; Chang, M. Retrieval augmented language model pre-training. In Proceedings of the
International Conference on Machine Learning, PMLR, Vienna, Austria, 13-18 July 2020; pp. 3929-3938.

Wu, J.; Zhu, J.; Qi, Y.; Chen,]J.; Xu, M.; Menolascina, F; Jin, Y.; Grau, V. Medical Graph RAG: Evidence-based Medical Large
Language Model via Graph Retrieval-Augmented Generation. In Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Vienna, Austria, 27 July-1 August 2025; Che, W., Nabende, J., Shutova, E.,
Pilehvar, M.T., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2025; pp. 28443-28467. [CrossRef]
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan,].D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877-1901.

Reynolds, L.; McDonell, K. Prompt programming for large language models: Beyond the few-shot paradigm. In Proceedings of
the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8-13 May 2021;
pp- 1-7.

Shin, T.; Razeghi, Y.; Logan, R.L., IV; Wallace, E.; Singh, S. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Online, 16-20 November 2020; pp. 4222-4235.

Xu, Z.; Wang, C.; Qiu, M,; Luo, F; Xu, R.; Huang, S.; Huang,]. Making pre-trained language models end-to-end few-shot learners
with contrastive prompt tuning. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining,
Singapore, 27 February—3 March 2023; pp. 438—446.

Miller, A.; Feng, W.; Batra, D.; Bordes, A.; Fisch, A.; Lu, J.; Parikh, D.; Weston,]. ParlAl: A Dialog Research Software Platform. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Copenhagen,
Denmark, 9-11 September 2017; pp. 79-84.

Wei,].; Bosma, M.; Zhao, V.; Guu, K.; Yu, AW,; Lester, B.; Du, N.; Dai, A.M.; Le, Q.V. Finetuned Language Models are Zero-Shot
Learners. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4-8 May 2021.

Fregly, C.; Barth, A.; Eigenbrode, S. Generative Al on AWS: Building Context-Aware Multimodal Reasoning Applicaions; O'Reilly
Media: Sebastopol, CA, USA, 2023.

Amershi, S.; Begel, A; Bird, C.; DeLine, R.; Gall, H.; Kamar, E.; Nagappan, N.; Nushi, B.; Zimmermann, T. Software engineering
for machine learning: A case study. In Proceedings of the 2019 IEEE/ ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada, 25-31 May 2019; pp. 291-300.

Juvekar, K.; Purwar, A. COS-Mix: Cosine Similarity and Distance Fusion for Improved Information Retrieval. arXiv 2024,
arXiv:2406.00638. [CrossRef]

Schmidt, D.C.; Spencer-Smith, J.; Fu, Q.; White, J. Cataloging Prompt Patterns to Enhance the Discipline of Prompt Engineer-
ing. 2023. Available online: https:/ /www.dre.vanderbilt.edu/~schmidt/PDF/ADA_Europe_Position_Paper.pdf (accessed on
25 September 2023).

Ip, J.; Vongthongsri, K. deepeval Version 3.6.9. 2025. Available online: https://github.com/confident-ai/deepeval (accessed on
10 August 2025).

Topsakal, O.; Akinci, T.C. Creating large language model applications utilizing langchain: A primer on developing LLM apps fast.
In Proceedings of the International Conference on Applied Engineering and Natural Sciences, Konya, Turkey, 10-12 July 2023;
Volume 1, pp. 1050-1056.

Zaharia, M.; Chen, A.; Davidson, A.; Ghodsi, A.; Hong, S.A.; Konwinski, A.; Murching, S.; Nykodym, T.; Ogilvie, P;
Parkhe, M.; et al. Accelerating the machine learning lifecycle with MLflow. IEEE Data Eng. Bull. 2018, 41, 39-45.

http://dx.doi.org/10.1109/TAI.2025.3567369
http://dx.doi.org/10.18653/v1/2025.acl-long.1381
http://dx.doi.org/10.48550/arXiv.2406.00638
https://www.dre.vanderbilt.edu/~schmidt/PDF/ADA_Europe_Position_Paper.pdf
https://github.com/confident-ai/deepeval

Knowledge 2025, 5, 25 20 of 20

47.

48.

49.

50.

51.

Desai, M.; Mehta, R.G.; Rana, D.P. A Model to Identify Redundancy and Relevancy in Question-Answer Systems of Digital
Scholarly Platforms. Procedia Comput. Sci. 2023, 218, 2383-2391. [CrossRef]

Sheng, E.; Chang, K.W.; Natarajan, P.; Peng, N. The woman worked as a babysitter: On biases in language generation. arXiv 2019,
arXiv:1909.01326. [CrossRef]

Chetnani, Y.P. Evaluating the Impact of Model Size on Toxicity and Stereotyping in Generative LLM. Ph.D. Thesis, State University
of New York at Buffalo, Buffalo, NY, USA, 2023.

Maynez, J.; Narayan, S.; Bohnet, B.; McDonald, R. On faithfulness and factuality in abstractive summarization. arXiv 2020,
arXiv:2005.00661. [CrossRef]

Rawte, V.; Tonmoy, S.; Rajbangshi, K.; Nag, S.; Chadha, A.; Sheth, A.P; Das, A. FACTOID: FACtual enTailment fOr hallucInation
Detection. arXiv 2024, arXiv:2403.19113.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procs.2023.01.213
http://dx.doi.org/10.48550/arXiv.1909.01326
http://dx.doi.org/10.48550/arXiv.2005.00661

	Introduction
	Background and Related Work
	Chatbot Development
	Retrieval-Augmented Generation
	Prompt Engineering
	Positioning This Work

	Methodology
	Requirements Engineering and Analysis
	Infrastructure Analysis
	Proposed Solution
	Component 1: Automated ETL Process
	Component 2: Prompt Engineering Patterns
	Component 3: Retrieval-Augmented Generation

	Implementation
	ETL Process Implementation
	Prompt Engineering Patterns
	RAG Pipeline Implementation
	First Step: Query Reception
	Second Step: Function Calling
	Third Step: Vector Similarity Search
	Fourth Step: Context Integration
	Fifth Step: Response Generation
	Failure Modes and Error Pattern Analysis
	Architecture and Performance Characteristics

	Results and Evaluation
	Evaluation Methodology
	Evaluation Tools
	Evaluation Process
	Evaluation Metrics

	Evaluation Results
	Organizational Validation

	Discussion
	Deployment Characteristics and Scalability
	Lessons Learned and Recommendations
	Limitations

	Conclusions
	References

