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Abstract. The integration of Artificial Intelligence (AI) and integrated sensors have enabled the 

measurement and improvement of worker and system performance across different industries. 

Despite these advances, Human factors (HF) remain underrepresented in management and engi-

neering research literature, often relegated to occupational safety and human resources. This 

study conducts a systematic review of 39 empirical case studies over the past 14 years analyz-

ing the impact of HF on industrial task performance using automatic measurement technolo-

gies. Findings indicate that research predominantly focuses on mental workload (51%), situa-

tional awareness (26%), and postural impact (21%), while the least explored constructs are 

physical fatigue (10%) and stress (8%). Since 87% of studies are laboratory-based, key chal-

lenges in industrial implementation remain unaddressed such as system interoperability, tech-

nological development, and worker acceptance. The study highlights the potential of HF meas-

urement to improve productivity and workers' well-being through adaptive and augmentation 

systems, emphasizing the need for further real-world applications. 
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In recent years, the integration of Artificial Intelligence (AI) technologies and inte-

grated sensors have allowed us to measure and improve performance in productive con-

texts [1]. These technologies are capable of measuring both worker performance and 

various key performance indicators (KPIs), enabling a learning cycle that adapts work-

ing conditions to improve system productivity [2]. For instance, in industries such as 

construction, allowing monitoring and quality control of the processes, as well as im-

provements in occupational safety and health (OSH) [3] or industries like agriculture 

where AI-enriched monitoring systems can track and predict crop growth [4]. There-

fore, technological development provides promising evidence that an objective and 

continuous measurement of productive activities offers an opportunity to create systems 

capable of adapting and improving productivity in industrial environments. 

Parallel to this technological development, there is a whole research area dedicated 

to ergonomics, also known as human factors (HF). This area focuses on improving hu-

man performance and well-being and has also leveraged sensor technologies and AI 

[5]. Advances in these technologies have significantly expanded the ability of measur-

ing HF in real-time and non-invasively, enabling monitoring of parameters such as 
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cardiac, respiratory, brain and muscle activity, among others [6], thus obtaining objec-

tive indicators regarding an individual’s psychological, cognitive and physical state. 

However, although technological developments have made it possible to measure 

both productive performance and HF, these latter have not been widely integrated into 

the management and engineering research literature. [7], not into the industry 4.0 liter-

ature. [8]. Scholars have stated that the overlook of HF in this area of knowledge is due 

to their being mostly addressed as an element of OSH or relegated to the realm of hu-

man resources [9]. Despite the increased integration over the years [10], the connection 

between these areas remains insufficient. 

This fragmented view ignores the interdependent nature of operational factors and 

HF, and their combined effects on productivity limits the opportunities in the engineer-

ing and management research literature. It is crucial to note that workers operating un-

der appropriate ergonomics design and cognitive-physical load perform with greater 

accuracy [11], lower error rate [12] and more efficient response to complex situations 

[13]. For instance, monitoring mental workload and situation awareness not only ena-

bles the identification of early signs of fatigue or overload, but also prevents potential 

operational stops, accidents [14] or high turnover [15]. While studies have started to 

integrate HF into productivity research [16], most of these studies are theoretical pro-

posals, highlighting the need to assess real-world applications. 

To address this gap in the literature, the present article aims to develop a review of 

empirical case studies that measure the effect of HF on task performance in industrial 

contexts using automatic measurement tools and AI. 39 publications addressing the 

topic from 2011 to the present were identified. Using the PRISMA model and perform-

ing a deductive analysis, adapting the theoretical model of HF integration in operations 

proposed by Neumann [17], [18]. 

Among the studies found, 26% focus on the construction industry, 18% focus on 

manufacturing and 16% focus on the medical field (mainly surgeries) with 16%. The 

prevalence of these industries could be explained by the high importance of OSH, as 

well as being areas where the human element plays a key role in the system´s produc-

tivity. 

However, 87% of the studies are cross-sectional and laboratory-based, revealing sig-

nificant gaps in industrial implementation. The main challenges include interoperability 

between systems, technological development, and worker acceptance. These limita-

tions present opportunities to explore augmentation systems to enhance workers’ capa-

bilities, particularly in industries where human-AI collaboration is becoming increas-

ingly critical. 

Regarding the HF constructs assessed, there is a predominance of studies evaluating 

mental workload (51%), followed by situational awareness (26%) and postural impact 

(21%). The least explored constructs among the identified ones are physical fatigue 

(10%) and stress (8%). This distribution reflects the growing importance of cognitive 

factors in modern productive environments, especially with the integration of AI and 

automation. 

The high interest in mental workload compared to other HF could be due to; (1) The 

impact that high levels of workload have on the number of errors made during infor-

mation processing [19]; (2) development of non-invasive technologies capable of 
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measuring mental workload, though cardiac, cerebral and ocular activity [20]; (3) sen-

sitivity to task complexity [21] and (4) effect of mental workload on other HF con-

structs. 

Among the measurement methods, the use of eye trackers stands out as the primary 

measurement tool (64%), followed by ECG (15%) and EEG (13%). Additionally, the 

integration of multimodal sensors and machine learning techniques allows the real-time 

analysis of the workers’ physical and cognitive states, aiding in the implementation of 

preventive interventions in the future. 

The results of this study contribute both theoretically and practically. Theoretically 

it was possible to verify the use of HF principles in the design of real production sys-

tems, highlighting the existing gap in the HF studies and their measurement methods. 

On the practical side, the potential of HF measurement to improve the productivity of 

production systems and the well-being of workers through adaptive and augmentation 

systems. 
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