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Abstract

As narrative extraction systems grow in complexity, establishing user trust through interpretable and explainable
outputs becomes increasingly critical. This paper presents an evaluation of an Explainable Artificial Intelligence
(XAI) system for narrative map extraction that provides meaningful explanations across multiple levels of
abstraction. Our system integrates explanations based on topical clusters for low-level document relationships,
connection explanations for event relationships, and high-level structure explanations for overall narrative
patterns. In particular, we evaluate the XAI system through a user study involving 10 participants that examined
narratives from the 2021 Cuban protests. The analysis of results demonstrates that participants using the
explanations made the users trust in the system’s decisions, with connection explanations and important event
detection proving particularly effective at building user confidence. Survey responses indicate that the multi-level
explanation approach helped users develop appropriate trust in the system’s narrative extraction capabilities.
This work advances the state-of-the-art in explainable narrative extraction while providing practical insights for
developing reliable narrative extraction systems that support effective human-AlI collaboration.
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1. Introduction

Understanding and extracting narratives from large collections of text documents presents significant
challenges in natural language processing and visual analytics [1]. As narrative extraction methods
become more sophisticated, particularly with the rise of complex Artificial Intelligence (AI) models,
there is an increasing need to make these processes transparent and interpretable for users [2, 3]. This
is especially crucial in domains such as journalism, intelligence analysis, and digital humanities, where
analysts need not only to identify narratives but also to understand how and why specific narrative
structures were extracted [4].

Narrative maps—graph-based representations that capture the connections between events in a
story—have emerged as a powerful tool for narrative sensemaking [5]. Throughout this work, we
consider events—the basic unit of narratives—to be represented by single documents, following a
document-based representation of news narratives [1], under the assumption that a single news article
usually contains a single main event [6].

Narrative maps are structures that represent events as nodes and their relationships as edges [5],
allowing analysts to explore how different parts of a narrative connect and evolve over time. However,
the extraction of these maps often relies on complex pipelines involving multiple Al models [4], from
embedding generation to clustering and graph optimization. This complexity creates a “black box”
effect [7], where users may not understand why certain events are connected or how the narrative
structure was determined.

At the fundamental level, narrative extraction involves both low-level text processing and high-level
structure generation, requiring explanations at different granularities [4]. The connections between
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events can be based on various factors [8] including temporal sequences, causal relationships, and
thematic similarities, making it difficult to explain why specific relationships were identified. Further-
more, narrative extraction typically combines multiple Al models [1], necessitating explanations that
bridge different types of processing and help users understand how these components work together to
produce the final narrative structure.

In this paper, we present an Explainable AI (XAI) system specifically designed for the task of narrative
map extraction. Our approach provides explanations at multiple levels of the extraction process [4]
through three main components. First, we leverage topical clusters [9, 10] to generate keyword-
based explanation for understanding the low-level document space. Second, we create a connection
explanation framework that clarifies why events are linked in the narrative structure using explanations
based on SHAP (Shapley Additive Explanations) values [11] and information about shared topics and
entities between events. Third, we implement a high-level explanation system that provides descriptive
names [12] for storylines and identifies important events.

Our results from the user study demonstrate that providing explanations at multiple levels helps
analysts develop appropriate trust—understood in the broad sense of reliability, predictability, and
efficiency [13]—in extracted narrative structures, leading to more effective human-AI collaboration.
This work addresses a critical gap in narrative extraction research by making these complex processes
more transparent and interpretable to end users. Our system and data used to extract narratives is
available in a public GitHub repository’.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
presents our methodology, including the XAI components and the user study. Section 4 reports the
results of the user study. Section 5 presents the discussion. Section 6 concludes with future directions.

2. Related Work

Research in explainable artificial intelligence for text analysis has emerged as a critical area as natural
language processing systems become more complex. Adadi and Berrada [3] provide a comprehensive
survey of XAI approaches, categorizing them into model-agnostic and model-dependent techniques.
Model-agnostic approaches can be applied to any machine learning model without consideration
of internal structure, while model-dependent techniques are tailored to specific architectures. In
text analysis, common XAI methods include simplification-based explanations [14], relevance-based
explanations [11], and visual explanations [15].

The integration of XAI with visual analytics systems has received particular attention in recent
research. Hohman et al. [16] examine how visualization techniques can help reveal the inner workings
of deep learning models for text processing. This work demonstrates that visual analytics can bridge the
gap between complex Al models and human understanding. Building on this foundation, recent work
by Vivacqua et al. [17] specifically addresses XAl in the context of visualizations and sensemaking,
showing how transparency in Al models can foster trust between humans and automated systems [18].

In the domain of narrative understanding, XAI faces unique challenges due to the temporal and
causal structure inherent in narratives. Abbott [19] establishes that narratives have underlying temporal
and causal structures that distinguish them from other forms of text. This structural complexity
creates additional requirements for explanation systems. Keith and Mitra [5] introduce the concept of
narrative maps as a representation for computational narrative extraction, demonstrating the need for
explanations that can address both local event relationships and global narrative structure.

The explanation of narrative structures presents distinct challenges compared to general text analysis.
Narrative extraction often relies on event-based models [1], which must capture both the individual
events and their interconnections. Traditional XAI approaches for text classification or similarity
measurement must be adapted to account for these narrative-specific requirements. Recent work by
Keith et al. [8] establishes design guidelines for narrative maps in sensemaking tasks, highlighting the
importance of explanations that align with analysts’ cognitive processes.
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While existing research has made progress in explaining individual components of narrative analysis
systems, there remains a gap in providing comprehensive explanations that span the entire extraction
pipeline. Current approaches typically focus on either low-level text processing or high-level structure
analysis, but rarely address both in an integrated manner. Our work builds upon these foundations
while addressing the challenges of explaining narrative extraction across multiple levels of abstraction.

Finally, we note that, although explainable Al offers significant benefits for narrative extraction
systems, we need to acknowledge potential limitations. XAI methods may introduce information
overload when explanations are too technical or detailed, overwhelming users rather than helping to
understand the AT model [20]. There is also the risk that explanations function merely as proxies for
complex underlying processes, potentially providing only a surface-level understanding that may not
fully represent the actual computational mechanisms [21]. Additionally, misalignment between the
outputs of the algorithm and the corresponding explanations can occur, leading to decreased trust if the
behavior of the system contradicts its explanations [22]. In our approach, we address these concerns
by designing explanations at appropriate levels of abstraction, focusing on providing general pointers
for understanding the big picture while also supporting specific confirmatory tasks, such as verifying
connection validity between events.

3. Methodology

3.1. Problem Definition and Assumptions

As narrative extraction systems grow in complexity, users face increasing difficulty understanding both
how these systems work and why specific narrative structures were extracted. This paper addresses the
specific problem of providing meaningful explanations across multiple levels of abstraction in narrative
map extraction systems to enhance transparency, user trust, and effective human-Al collaboration.

In this context, our approach is built on several key assumptions. First, users must understand
both the low-level relationship between documents and the high-level narrative structures to develop
the appropriate trust in the system. Second, different types of explanations are required for different
aspects of the system, such as topical clusters, connections, and storylines. Third, explanations bridging
the gap between computational processes and human cognition should enhance trust and usability.
Additionally, explanations should balance detail with comprehensibility, avoiding information overload
while providing sufficient insight to support user understanding and decision making.

These assumptions guided our development of our multi-level explanation components that address
different aspects of the narrative extraction process while maintaining cognitive accessibility.

3.2. Overview of XAl System for Narrative Maps

Our explainable Al system for narrative maps addresses the challenge of providing meaningful explana-
tions across multiple levels of abstraction in the narrative extraction process. We note that our XAI
system builds upon previous extraction models and interactive prototypes [5, 4] and thus we do not ex-
plain the underlying components or the extraction method of the narrative maps in detail. In particular,
the system integrates with a mixed multi-model pipeline [4] that combines low-level continuous spaces
for document representation with high-level discrete structures for narrative visualization.

In general, the extraction process takes news articles as input and proceeds in two main phases:
extraction and post-processing [4]. During extraction, the system maps articles into an embedding
space, computes coherence between events using information about topical clusters and similarity
measures, and uses linear programming to build the optimal narrative structure [5]. Post-processing
then simplifies this structure, following design guidelines [23] to make it more understandable by
removing redundant connections while preserving the core narrative elements.

At the foundation of our implementation lies the principle that explanations must bridge the gap
between the computational processes of narrative extraction and the cognitive processes of human
analysts. We accomplish this through a three-tiered approach that provides explanations for the



document space (a low-level model without structure), the narrative structure (a high-level model
that captures the underlying narrative connections), and the connection between these two. These
explanations are generated through a combination of model-agnostic and model-dependent techniques,
carefully selected to maintain computational efficiency while providing meaningful insights.

We show the pipeline of our system in Figure 1. To use the system, the user extracts a narrative
map representation from data with user-defined parameters (map size, story coverage, and temporal
sensitivity). The narrative representation is then fed to the XAI components. The XAI components
focus on each of the previously mentioned tiers (the low-level model, the high-level model, and the
connection between these two).

For the low-level model, the XAI system uses keyword representations of topical clusters to provide
big picture explanations that seek to capture general patterns in the document space. For the high-level
model, the XAI system uses storyline names to provide big picture explanations. The storyline names
are extracted from relevant parts of the documents using a ranking-based name extraction algorithm.
The XAI system also provides supporting explanations for sensemaking purposes. In particular, the
system identifies important events to help users identify highly relevant documents. These important
events are identified based on the relevance of their content with respect to their storyline or whether
they are relevant to the overall structure of the narrative (e.g., acting as a central node in the graph).

Finally, for the connection between the two models, the XAI system assigns labels to each connection,
which provide a super explanation of the type of connection. The types identified by the XAI system are
based on a previous taxonomy used by analysts during the narrative sensemaking process [23]. While
these labels provide a general view of why two specific events were connected, they do not provide
sufficient details. Thus, we expand upon each relevant element of the different types of connections,
including a breakdown of the topic to which each event belongs, the common entities they have, and
the specific contributions of each keyword towards similarity. The information shown depends on
the specific label assigned to the connection (e.g., a connection with an “Entity” label will display the
common entities). For the topical information, we specify whether the events share common topics
and the keywords that define these topics. Following the same format from the explanations of the
low-level space. For common entities, we simply intersect the sets of identified entities and display
them accordingly. To find the keywords with the highest contribution (in positive or negative terms),
we use the SHAP library [11] with a permutation-based approach.
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3.3. Low-level Space Explanations

The low-level space explanations seek to help analysts understand the document embedding space and
the topical relationships between events. We implement this by identifying topical clusters to reveal
the underlying structure of the document space. In particular, we use HDBSCAN clustering [24] to
identify coherent groups of documents in the embedding space. This hierarchical clustering method
was used because it has proven to work reliably for text data in the context of narrative extraction [5, 4].
Furthermore, it can be used to extract cluster probability vectors (i.e. soft clustering), allowing for a
more nuanced assignment of events to each cluster [24].

For each cluster, we generate keyword-based explanations using a modified TF-IDF (Term Frequency
and Inverse Document Frequency) representation [25] that incorporates both global and local term
importance, allowing us to capture cluster-specific terminology while maintaining context from the
broader document collection. Specifically, we compute the importance score S for term ¢ in cluster c as:

S(ta C) = TF(ta C) . IDFglobal(t) ’ IDEocal(ta C) (1)

where T'F(t, c) represents the term frequency in the cluster, /D Fyopq(t) captures the term’s impor-
tance across the entire corpus, and I D Fj,., (¢, c) measures the term’s specificity within the cluster.

The cluster visualization provides a spatial view of the document relationships through a 2D projection
using UMAP [26]. This projection preserves both local and global structure, allowing analysts to see how
documents relate to each other within and across topic clusters. This visualization includes interactive
tooltips that display the cluster membership and key terms for specific documents.

To ensure the explanations remain interpretable, we limit the number of keywords shown for each
cluster based on empirical testing with analysts. The system displays the top-k keywords where k is
determined dynamically based on the cluster size and keyword importance distribution. This approach
prevents information overload while ensuring that sufficient context is provided for understanding
each topic cluster. We show the topic explanations in Figure 2(a).

3.4. Connection Explanations

The connection explanation component addresses the critical task of explaining why specific events are
connected in the narrative. Our approach generates these explanations through three interconnected
processes: connection label generation, detailed explanation generation, and event comparison.

Connection label generation relies on a taxonomy derived from narrative map design guidelines
[23]. The system classifies connections into three primary types: similarity-based, entity-based, and
topical connections. To determine the connection type, we analyze the components of the coherence
measure used in the extraction process. The system computes the relative contribution of clustering
similarity versus basic text similarity, assigning the label “Topical” when the clustering component
contributes more than 50% to the coherence score, and “Similarity” otherwise. Entity-based connections
are identified through named entity recognition, with an additional overlap score based on Jaccard
similarity to handle partial entity matches:

|tokens(e1) N tokens(ez)|
l = 2
overlap(er, e2) |tokens(e1) U tokens(ez)| @

For detailed explanation generation, we implement a model-agnostic approach using SHAP values
[11] to identify the most influential terms contributing to event connections. The system generates
explanations by analyzing both positive and negative contributions to the connection strength. We
modify the standard SHAP implementation to produce interpretable explanations by focusing on the
headline and first thirty words of each event, which typically contain the most relevant information in
news narratives [6]. We show the connection explanation function in Figure 2(b).

The event comparison functionality extends these explanation capabilities to help analysts understand
why certain events are not connected. This component applies the same analysis techniques used for
connected events but focuses on explaining the factors that resulted in events remaining unconnected.
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Figure 2: Example explanations using a COVID-19 dataset (not used in the tasks of the user study, shown only
as an illustration). (a) Topical cluster explanations for the low-level space, including a scatter plot of the space
and an overlay of the main storyline. Tooltips with the same color as the corresponding cluster are also included.
In this figure, we also highlighted the corresponding description on the topic list. (b) Explanation for an edge
between two events. This explanation specifies the type of connection (e.g., topical or entity-based), the topics of
the events, and the keyword contributions that directly impact their similarity and thus the coherence score.

3.5. High-level Structure Explanations

High-level structure explanations focus on making the global narrative structure interpretable through
automated storyline naming and important event detection. These explanations help analysts understand
the broader narrative patterns while maintaining connection to the underlying evidence.

3.5.1. Storyline Name Extraction

The storyline naming process builds upon the work of Laban and Hearst [12] in timeline summarization.
Our approach identifies candidate names by extracting maximal noun phrases that contain both proper
nouns and abstract terms. We show a simplfiied, but illustrative version of the model to score these
candidates using a linear combination of factors:

SCOT@(TL(IT)’L@) = Q- Centity + B : Cabstract + - Ccoverage —0- Ooverlap (3)

where Centity Capstract: and Ceoverage represent the presence of entities, abstract terms, and coverage
of storyline content respectively, while O¢yerqp penalizes redundancy with existing storyline names.
The weights «, 3, 7, and § are determined empirically.

3.5.2. Important Event Detection

Important event detection combines both content-based and structural approaches to identify key events
in the narrative. For content importance, we compute the similarity between each event’s embedding
and the centroid of its storyline. Structural importance is assessed through degree centrality in the



Table 1
Post-task questionnaire with Likert scale questions.

Category Questionnaire Item

General Usefulness: The explanations provided by the system were useful.
Trust: The explanations made me trust the system more.

Storyline Names  Correctness: The storyline names provided by the system were appropriate for each storyline.
Relevance: The storyline names provided by the system were relevant.
Usefulness: The storyline names provided by the system made the narrative easier to understand.

Connections Labels Correctness: The connection labels provided by the system about the types of connections
made sense.
Labels Usefulness: The connection labels provided by the system about the types of connections
were useful to understand the connections.
Connection Explanations: The in-depth explanations for connections provided by the system
were useful.
Event Comparison: The event comparison explanations for unconnected events provided by the
system were useful.

Important Events Relevance: The important events selected by the system were relevant.
Usefulness: The important events selected by the system made the narrative easier to understand.

narrative graph, weighted by the coherence values of the connections. The system identifies important
events by selecting the top-n events according to each criterion:

Icontent (6) = 003(6; CentTOidstoryline) (4)
Tstructure(€) = Z coherence(e, v) (5)
vEN (e)

The explanation system visually marks these important events on the narrative map. Events that
score highly on both content and structural measures receive additional emphasis, as they represent
key narrative elements that are both thematically central and well-connected.

3.6. Evaluation of the System

We evaluated our system through a user study focused on analyzing narratives about the 2021 Cuban
protests. Using an insight-based evaluation methodology [27], we assessed how effectively our XAI
components supported narrative sensemaking tasks. The dataset used in this user study comprised 160
news articles from diverse sources, providing comprehensive coverage while maintaining manageable
computational requirements. We recruited 10 participants with backgrounds in computer science,
communications, and national security. The participants reported minimal prior knowledge of the 2021
Cuban protests, with a mean (M) familiarity of 1.4 on a 5-point Likert scale and a standard deviation
(SD) of 0.52. The participants first received a 15-minute training session using a separate COVID-19
news dataset [23] to familiarize themselves with the features of the system, ensuring that they could
focus on evaluating the XAI features rather than learning the mechanics of the system.

The insight-based evaluation required users to obtain as many insights as possible with our system.
The insights were then categorized and counted. This open-ended task gives analysts freedom to
explore the dataset and provides an approximation of a realistic narrative sensemaking task. Finally, we
asked participants to complete a follow-up questionnaire (see Table 1) on their perception of the XAI
components to help develop an understanding of the narrative structure and verify their analysis.

4. Evaluation Results

Our evaluation focused on user perception and trust in the system’s XAI components. We show the
results in Figure 3. The results are reported on a 5-point Likert scale.



Responses (5-point Likert Scale)

1 (“Strongly Disagree”) to 5 (“Strongly Agree”)

(a) Overall Explanations (b) Important Events
1 2 3 4 5 Mean SD 1 2 3 4 5 Mean SD
Trust 0 0 1 3 6 4.50 0.71 Relevance 0 0 1 5 4 4.30 0.67
Usefulness 0 0 1 5 4 4.30 0.67 Usefulness 0 0 2 4 4 4.20 0.79

d) Connections
(c) Storyline Names ()

s 1 2 3 4 5 Mean SD
1.2 3 4 5 Mean SD LabelCorrectness 0 O 2 6 2 4.00 0.67

Correctness 1 4 1 2 2 3.00 7.41
Label Usefulness 0 1 & 5 1 3.60 0.84

Relevance 1 0 4 1 4 3.70 1.34
Explanation Usefulness 0 0 1 7 2 410 0.57

Usefulness 0 1 2 5 2 3.80 0.92
Comparison Usefulness 0 0 4 4 2 3.80 0.79

Figure 3: A tally of the answers to our survey questions on the explainable Al components.

Overall Explanations. Survey results indicated that, in general, the explanation components
significantly increased user trust in the system (M = 4.5, SD = 0.71) and were considered useful by the
participants (M = 4.3, SD = 0.67). In particular, the participants reported that the explanations of the
topical clusters using TF-IDF increased confidence in understanding the clustering of documents.

Important Events. The important events detected by the system were considered relevant (M = 4.3,
SD = 0.67) and useful (M = 4.2, SD = 0.79). Compared to other components of the system (story names
and connection labels), important event detection proved to be more consistently valuable, helping
participants quickly identify key narrative elements.

Storyline Names. These high-level structure explanations showed mixed results in building trust.
Automated storyline naming received more variable feedback in terms of correctness, presenting a
higher standard deviation and lower mean (M = 3.0, SD = 1.41), and only slightly better in terms of
relevance (M = 3.7, SD = 1.34) and usefulness (M = 3.8, SD = 0.92). Paraphrased from a participant:
“Storyline names are not always correct, but they are relevant and useful.”

Connections. Label-based explanations demonstrated varying levels of trust enhancement among
participants. The generated labels were generally considered correct (M = 4.0, SD = 0.67), but slightly
less useful (M = 3.6, SD = 0.84). The SHAP-based keyword explanations helped the participants verify
connection validity, increasing confidence in the system’s linking decisions, and were considered
generally useful (M = 4.1, SD = 0.57). The comparison tool was considered slightly less useful (M = 3.8,
SD = 0.79). Analysis of participant feedback revealed that the combination of explanations at multiple
levels enhanced trust in the system’s narrative extraction capabilities.

These results suggest that our XAl system effectively supports user trust in narrative analysis systems,
particularly when explanations span multiple levels of abstraction. The variable effectiveness of different
explanation types indicates opportunities for future refinement of explanation strategies to better align
with user expectations and trust-building needs.

5. Discussion and Limitations

5.1. Explainable Al Results

Our results indicate that XAI components substantially support narrative sensemaking tasks when
properly integrated into the analysis workflow. In particular, the participants of our user study consid-
ered the addition of XAI beneficial and it increased their trust in the underlying models, even if the
explanations themselves were not always particularly useful for the assigned task. However, our user
evaluation also shows that there is some contention on the usefulness of each individual component,
such as storyline names, which were sometimes considered very useful and sometimes discarded as
mostly useless, depending on the participant.



For most use cases, XAl provides useful scaffolding and enables users to potentially find more insights.
However, developing appropriate XAI methods that capture the intricacies of the underlying models and
are useful from a user’s perspective is a complex task. In general, based on our results, we recommend
designing such explanations with the goal of helping users understand the big picture by providing
general pointers and providing support for specific confirmatory tasks, such as checking whether an
element of the model is valid (e.g., event connections). In our evaluation, methods that provided too
much information or were too technical in nature were generally regarded negatively, as participants
were likely overwhelmed by the information overload of the explanations [20].

Our findings provide some practical insights for future narrative extraction systems. In particular,
the variable effectiveness of different explanation types demonstrates that explanation strategies should
be tailored to specific components of the narrative structure, rather than applying a single approach
uniformly. Furthermore, our analysis of results suggests that a design approach that combines multiple
explanation modalities while prioritizing cognitive accessibility over technical comprehensiveness.
In general, we found that explanations contributed to user-perceived trust, which underscores the
importance of transparency in Al-assisted analytical tasks.

5.2. Trust Building with Explainable Al

The proposed explainable Al framework relies on a set of machine learning and data mining algorithms
to interpret the semantic representations embedded in the narrative maps. While this method provides
a surface-level explanation of the outcomes of the model, it introduces a significant challenge to the
reliability and validity of the generated outcomes. Minor adjustments at each stage of the process can
yield disparate outputs, thereby raising concerns about the consistency and accuracy of the results.
However, from the results of our user study, despite these potential limitations, the users still found the
system to be useful for solving sensemaking tasks.

Similarly, XAI methods often function as proxies that attempt to clarify the impact or contribution
of various features within the model to increase transparency [21]. For example, in the case of our
narrative map explanations, we leverage topical clusters and storyline name extraction to summarize
the events and provide a general overview. However, even if these explanations may only capture a
surface-level understanding of the processes governing the system, our user study shows that these
explanations are still useful, even if they do not fully represent the underlying model.

Moreover, a key concern when implementing XAI methods is the potential risk of providing inaccurate
or misleading explanations, which, in turn, could lead to a decrease in user trust in the system [28, 29, 30]
and the underlying Al model [22]. This is an issue that should be carefully addressed to ensure that
XAI methods are transparent, trustworthy, and reliable. Thus, to ensure that users are aware that the
algorithm outputs may not always be perfectly aligned with the XAI components, future versions of
the system can incorporate warning mechanisms or indicators that can signal when the explanations
provided by the model might be less reliable or accurate.

When it comes to the storyline names, text summarization is an active area of research [31] with
many challenges and opportunities, particularly in handling context, maintaining coherence, and
ensuring accuracy while condensing large volumes of information. While the current method follows an
extractive strategy, a shift towards an abstractive strategy might be more effective [32]. This approach
would involve creating names with words that might not directly exist in the storylines but accurately
describe them. Implementing this could be achieved with generative neural networks [33], which can
distill the essential aspects of the storyline.

5.3. Limitations

First, we note that we did not compare the proposed system with a proper baseline in our user study,
such as another system from the literature or the same system without XAI Instead, our focus was on
exploring how participants used the features and whether they considered them useful. The findings of
this study could help inform future versions of such XAI systems to provide better user support.



Furthermore, we note that participants had no easy way to determine whether the extracted narratives
were indeed correct, as the system does not provide evaluation metrics on the factual accuracy of the
narratives. However, evaluating the correctness of narratives in general is an open problem, as there
are no unified metrics that work in all cases [5].

Scalability remains a consideration for larger datasets. Although our implementation handled the
test dataset effectively, the computational complexity of generating comprehensive explanations may
become prohibitive for larger narrative collections. Future work could explore hierarchical explanation
strategies that can scale more effectively to larger datasets while maintaining explanation quality.

Despite these limitations, our results demonstrate the value of integrated XAl components in narrative
analysis systems. The positive user feedback on explanation utility suggests that our approach effectively
supports the sensemaking process of analysts. Future work could address these limitations while
expanding XAI methods to handle additional types of narrative relationships and explanation needs.

6. Conclusions

This paper presented the evaluation of an XAI system to explain Al-driven narrative extraction systems
through multiple levels of abstraction. Our approach bridges the gap between low-level text processing
and high-level narrative structures, providing analysts with meaningful explanations that enhance
trust in automated narrative analysis. Through empirical evaluation, we have shown that integrated
explainable Al components improve user confidence in working with complex narrative structures.

The results of our user study indicate that narrative maps augmented with XAl techniques effectively
build user trust in automated analysis systems. The combination of topical cluster explanations,
connection explanations, and high-level structure explanations provides analysts with a coherent
understanding of system decisions at multiple levels. Our evaluation demonstrates that connection
type labels and important event detection enhance user confidence, while more complex explanations
require additional refinement to maximize their trust-building potential.

Several promising directions emerge for future research. The development of more sophisticated
temporal and causal explanation strategies could further enhance user trust in automated narrative
extraction. In addition, the exploration of adaptive explanation approaches that respond to different
levels of user expertise and trust requirements presents an important avenue for investigation.

The broader implications of this work extend beyond narrative analysis to the general challenge of
building trustworthy Al systems. Our findings suggest that carefully designed explanations at multiple
levels of abstraction can effectively support human-Al collaboration by establishing appropriate levels
of trust. As narrative analysis systems continue to evolve, the principles and approaches developed in
this work can inform the design of future explainable Al systems that users can confidently rely upon
for complex analytical tasks.
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